11 research outputs found
Encoding and retrieval in a CA1 microcircuit model of the hippocampus
Recent years have witnessed a dramatic accumulation of
knowledge about the morphological, physiological and molecular characteristics,
as well as connectivity and synaptic properties of neurons in
the mammalian hippocampus. Despite these advances, very little insight
has been gained into the computational function of the different neuronal
classes; in particular, the role of the various inhibitory interneurons in
encoding and retrieval of information remains elusive. Mathematical and
computational models of microcircuits play an instrumental role in exploring
microcircuit functions and facilitate the dissection of operations
performed by diverse inhibitory interneurons. A model of the CA1 microcircuitry
is presented using biophysical representations of its major cell
types: pyramidal, basket, axo-axonic, bistratified and oriens lacunosummoleculare
cells. Computer simulations explore the biophysical mechanisms
by which encoding and retrieval of spatio-temporal input patterns
are achieved by the CA1 microcircuitry. The model proposes functional
roles for the different classes of inhibitory interneurons in the encoding
and retrieval cycles