40 research outputs found

    Establishing a proactive safety and health risk management system in the fire service

    Get PDF
    BACKGROUND: Formalized risk management (RM) is an internationally accepted process for reducing hazards in the workplace, with defined steps including hazard scoping, risk assessment, and implementation of controls, all within an iterative process. While required for all industry in the European Union and widely used elsewhere, the United States maintains a compliance-based regulatory structure, rather than one based on systematic, risk-based methodologies. Firefighting is a hazardous profession, with high injury, illness, and fatality rates compared with other occupations, and implementation of RM programs has the potential to greatly improve firefighter safety and health; however, no descriptions of RM implementation are in the peer-reviewed literature for the North American fire service. METHODS: In this paper we describe the steps used to design and implement the RM process in a moderately-sized fire department, with particular focus on prioritizing and managing injury hazards during patient transport, fireground, and physical exercise procedures. Hazard scoping and formalized risk assessments are described, in addition to the identification of participatory-led injury control strategies. Process evaluation methods were conducted to primarily assess the feasibility of voluntarily instituting the RM approach within the fire service setting. RESULTS: The RM process was well accepted by the fire department and led to development of 45 hazard specific-interventions. Qualitative data documenting the implementation of the RM process revealed that participants emphasized the: value of the RM process, especially the participatory bottom-up approach; usefulness of the RM process for breaking down tasks to identify potential risks; and potential of RM for reducing firefighter injury. CONCLUSIONS: As implemented, this risk-based approach used to identify and manage occupational hazards and risks was successful and is deemed feasible for U.S. (and other) fire services. While several barriers and challenges do exist in the implementation of any intervention such as this, recommendations for adopting the process are provided. Additional work will be performed to determine the effectiveness of select controls strategies that were implemented; however participants throughout the organizational structure perceived the RM process to be of high utility while researchers also found the process improved the awareness and engagement in actively enhancing worker safety and health.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    A computer-based methodology to design non-standard peptides potentially able to prevent HOX-PBX1-associated cancer diseases

    Get PDF
    In the last decades, HOX proteins have been extensively studied due to their pivotal role in transcriptional events. HOX proteins execute their activity by exploiting a cooperative binding to PBX proteins and DNA. Therefore, an increase or decrease in HOX activity has been associated with both solid and haematological cancer diseases. Thus, inhibiting HOX-PBX interaction represents a potential strategy to prevent these malignancies, as demonstrated by the patented peptide HTL001 that is being studied in clinical trials. In this work, a computational study is described to identify novel potential peptides designed by employing a database of non-natural amino acids. For this purpose, residue scanning of the HOX minimal active sequence was performed to select the mutations to be further processed. According to these results, the peptides were point-mutated and used for Molecular Dynamics (MD) simulations in complex with PBX1 protein and DNA to evaluate complex binding stability. MM-GBSA calculations of the resulting MD trajectories were exploited to guide the selection of the most promising mutations that were exploited to generate twelve combinatorial peptides. Finally, the latter peptides in complex with PBX1 protein and DNA were exploited to run MD simulations and the ΔGbinding average values of the complexes were calculated. Thus, the analysis of the results highlighted eleven combinatorial peptides that will be considered for further assays

    On the Classification of Brane Tilings

    Full text link
    We present a computationally efficient algorithm that can be used to generate all possible brane tilings. Brane tilings represent the largest class of superconformal theories with known AdS duals in 3+1 and also 2+1 dimensions and have proved useful for describing the physics of both D3 branes and also M2 branes probing Calabi-Yau singularities. This algorithm has been implemented and is used to generate all possible brane tilings with at most 6 superpotential terms, including consistent and inconsistent brane tilings. The collection of inconsistent tilings found in this work form the most comprehensive study of such objects to date.Comment: 33 pages, 12 figures, 15 table

    Large N Free Energy of 3d N=4 SCFTs and AdS/CFT

    Get PDF
    We provide a non-trivial check of the AdS_4/CFT_3 correspondence recently proposed in arXiv:1106.4253 by verifying the GKPW relation in the large N limit. The CFT free energy is obtained from the previous works (arXiv:1105.2551, arXiv:1105.4390) on the S^3 partition function for 3-dimensional N=4 SCFT T[SU(N)]. This is matched with the computation of the type IIB action on the corresponding gravity background. We unexpectedly find that the leading behavior of the free energy at large N is 1/2 N^2 ln N. We also extend our results to richer theories and argue that 1/2 N^2 ln N is the maximal free energy at large N in this class of gauge theories.Comment: 20 pages, 3 figure

    Graft healing in anterior cruciate ligament reconstruction

    Get PDF
    Successful anterior cruciate ligament reconstruction with a tendon graft necessitates solid healing of the tendon graft in the bone tunnel. Improvement of graft healing to bone is crucial for facilitating an early and aggressive rehabilitation and ensuring rapid return to pre-injury levels activity. Tendon graft healing in a bone tunnel requires bone ingrowth into the tendon. Indirect Sharpey fiber formation and direct fibrocartilage fixation confer different anchorage strength and interface properties at the tendon-bone interface. For enhancing tendon graft-to-bone healing, we introduce a strategy that includes the use of periosteum, hydrogel supplemented with periosteal progenitor cells and bone morphogenetic protein-2, and a periosteal progenitor cell sheet. Future studies include the use of cytokines, gene therapy, stem cells, platelet-rich plasma, and mechanical stress for tendon-to-bone healing. These strategies are currently under investigation, and will be applied in the clinical setting in the near future

    Recommendation of RILEM TC 243-SGM: Functional requirements for surface repair mortars for historic buildings

    Get PDF
    Surface repair mortars are used for the compensation, or repair, of lost portions of surface materials in historic masonry buildings. It is recommended that their design and application should be performed in a wider context of conservation values related decision making, to prioritise preservation of original fabric, authenticity of approach and maintenance of integrity, and not just on technical principles alone. However, a technical context for their design does exist, that requires understanding of the properties of the substrate that they will be applied onto, and adherence to minimum aesthetic (colour and texture) requirements. The principles of physical, mechanical and chemical compatibility of repair apply and the attributes of the repair mortar should be carefully matched to the substrate alongside a sacrificial behaviour (not more durable than the material being replaced). Guidance is given on the design, application and the functional requirements that must be met when using surface repair mortars.Accepted Author ManuscriptHeritage & Technolog

    Repeat measures of DNA methylation in an inception cohort of firefighters

    No full text
    Objectives: Firefighters face exposures associated with adverse health outcomes including risk for multiple cancers. DNA methylation, one type of epigenetic regulation, provides a potential mechanism linking occupational hazards to adverse health outcomes. We hypothesised that DNA methylation profiles would change in firefighters after starting their service and that these patterns would be associated with occupational exposures (cumulative fire-hours and fire-runs). Methods: We profiled DNA methylation with the Infinium MethylationEPIC in blood leucocytes at two time points in non-smoking new recruits: prior to live fire training and 20-37 months later. Linear mixed effects models adjusted for potential confounders were used to identify differentially methylated CpG sites over time using data from 50 individuals passing all quality control. Results: We report 680 CpG sites with altered methylation (q value <0.05) including 60 with at least a 5% methylation difference at follow-up. Genes with differentially methylated CpG sites were enriched in biological pathways related to cancers, neurological function, cell signalling and transcription regulation. Next, linear mixed effects models were used to determine associations between occupational exposures with methylation at the 680 loci. Of these, more CpG sites were associated with fire-runs (108 for all and 78 for structure-fires only, q<0.05) than with fire-hours (27 for all fires and 1 for structure fires). These associations were independent of time since most recent fire, suggesting an impact of cumulative exposures. Conclusions: Overall, this study provides evidence that DNA methylation may be altered by fireground exposures, and the impact of this change on disease development should be evaluated.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore