134 research outputs found

    Axial Imidazole Distorsion Effects on the Catalytic and Binding Properties of Chelated Deuterohemin Complexes

    Get PDF
    The effect of strain in the axial coordination of imidazole to the heme has been studied in the chelate complexes deuterohemin-histidine (DH-His) and deuterohemin-alanylhistidine (DH-AlaHis). Molecular mechanics calculations indicate that three types of distortion of the axial ligand occur in DH-His, due to the relatively short length of the arm carrying the donor group: tilting off-axis, tipping, and inclination of the imidazole plane with respect to the axial Fe-N bond. The effects of tilting (¢ç 10°) and inclination of the imidazole ring (¢ä 17°) are dominant, while tipping is small and is probably of little importance here. By contrast, the axial imidazole coordination is normal in DH-AlaHis and other computed deuterohemin-dipeptide or -tripeptide complexes where histidine is the terminal residue, the only exception being DH-ProHis, where the rigidity of the proline ring reduces the flexibility of the chelating arm. The distortion in the axial iron-imidazole bond in DH-His has profound and negative influence on the binding and catalytic properties of this complex compared to DH-AlaHis. The former complex binds more weakly carbon monoxide, in its reduced form, and imidazole, in its oxidized form, than the latter. The catalytic efficiency in peroxidative oxidations is also reduced in DH-His with respect to DH-AlaHis. The activity of the latter complex is similar to that of microperoxidase-11, the peptide fragment incorporating the heme that results from hydrolytic cleavage of cytochrome

    Metal Ion Dependence of the Asymmetric Transamination of Phenylpyruvic Acid by Pyridoxamine in the Presence of β-Cyclodextrin

    Get PDF
    Transamination reactions of phenylpyruvic acid and pyridoxamine in the presence of metal ions and B-cyclodextrin as a chiral auxiliary have been investigated in neutral aqueous solution. The rate and extent of the transamination, and the asymmetric induction observed in the reaction depend upon the nature of the metal ion. In particular, while Zn2+and C02+yield preferentially the aldimine complex of L-phenylalanine, Cu2\u27 yields preferentially the complex of D-phenylalanine and Ni2+only the racemic product. It is proposed that the ketimine complexes are bound to B-cyclodextrin through the phenyl group of the keto acid residue and that the stereoselectivity of the reaction is originated by some direct interaction of the hydroxyl groups of the cyclodextrin moiety and the metal ions. Although the extent of asymmetric induction is modest in these simple systems (10-20°/0 optical purities), the present results show that transition metal complexes can play a prominent role in determining the steric course of the asymmetric reaction

    Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition and docking studies

    Get PDF
    The present investigation addresses the problem of the binding mode of phenolic inhibitors and the substrate ascorbate to the active site of ascorbate oxidase. The results from both types of compounds indicate that the binding site is located in a pocket near the type 1 copper center. This information is of general interst for blue multicopper oxidases. Docking calculations performed on the ascorbate oxidase\u2013ascorbate complex show that binding of the substrate occurs in a pocket near type 1 Cu, and is stabilized by at least five hydrogen bonding interactions with protein residues, one of which involves the His512 Cu ligand. Similar docking studies show that the isomeric fluorophenols, which act as competitive inhibitors toward ascorbate, bind to the enzyme in a manner similar to ascorbate. The docking calculations are supported by 19F NMR relaxation measurements performed on fluorophenols in the presence of the enzyme, which show that the bound inhibitors undergo enhanced relaxation by the paramagnetic effect of a nearby Cu center. Unambiguous support to the location of the inhibitor close to type 1 Cu was obtained by comparative relaxation measurements of the fluorophenols in the presence of the ascorbate oxidase derivative where a Zn atom selectively replaces the paramagnetic type 2 Cu. The latter experiments show that contribution to relaxation of the bound inhibitors by the type 2 Cu site is negligible

    Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo

    Get PDF
    Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(\u3b2-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 \ub1 4 nm in size and 13 \ub1 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma

    Gleichgewichte der homogenen H 2

    No full text
    • …
    corecore