790 research outputs found

    A rapid method to collect methane from peatland streams for radiocarbon analysis

    Get PDF
    Peatland streams typically contain high methane concentrations and act as conduits for the release of this greenhouse gas to the atmosphere. Radiocarbon analysis provides a unique tracer that can be used to identify the methane source, and quantify the time elapsed between carbon fixation and return to the atmosphere as CH4. Few studies – those that have focus largely on sites with bubble (ebullition) emissions – have investigated the14C age of methane in surface waters because of the difficulty in collecting sufficient CH4for analysis. Here, we describe new sampling methods for the collection of CH4samples from CH4-oversaturated peatland streams for radiocarbon analysis. We report the results of a suite of tests, including using methane14C standards and replicated field measurements, to verify the methods. The methods are not restricted to ebullition sites, and can be applied to peatland streams with lower methane concentrations. We report the14C age of methane extracted from surface water samples (~4–13 l) at two contrasting locations in a temperate raised peat bog. Results indicate substantial spatial variation with ages ranging from ~400 (ditch in afforested peatland) to ~3000 years BP (bog perimeter stream). These contrasting ages suggest that methane in stream water can be derived from a wide range of peat depths. This new method provides a rapid (10–15 min per sample) and convenient approach, which should make14CH4dating of surface water more accessible and lead to an increased understanding of carbon cycling within the soil–water–atmosphere system

    Provenance Analysis of the Ochoco Basin, Central Oregon: A Window Into the Late Cretaceous Paleogeography of the Northern U.S. Cordillera

    Get PDF
    Cretaceous forearc strata of the Ochoco basin in central Oregon may preserve a record of regional transpression, magmatism, and mountain building within the Late Cretaceous Cordillera. Given the volume of material that must have been eroded from the Sierra Nevada and Idaho batholith to result in modern exposures of mid- and deep-crustal rocks, Cretaceous forearc basins have the potential to preserve a record of arc magmatism no longer preserved within the arc, if forearc sediment can be confidently linked to sources. Paleogeographic models for mid-Cretaceous time indicate that the Blue Mountains and the Ochoco sedimentary overlap succession experienced postdepositional, coast-parallel, dextral translation of less than 400 km or as much as 1700 km. Our detailed provenance study of the Ochoco basin and comparison of Ochoco basin provenance with that of the Hornbrook Formation, Great Valley Group, and Methow basin test paleogeographic models and the potential extent of Cretaceous forearc deposition. Deposition of Ochoco strata was largely Late Cretaceous, from Albian through at least Santonian time (ca. 113–86 Ma and younger), rather than Albian–Cenomanian (ca. 113–94 Ma). Provenance characteristics of the Ochoco basin are consistent with northern U.S. Cordilleran sources, and Ochoco strata may represent the destination of much of the mid- to Late Cretaceous Idaho arc that was intruded and eroded during and following rapid transpression along the western Idaho shear zone. Our provenance results suggest that the Hornbrook Formation and Ochoco basin formed two sides of the same depositional system, which may have been linked to the Great Valley Group to the south by Coniacian time, but was not connected to the Methow basin. These results limit northward displacement of the Ochoco basin to less than 400 km relative to the North American craton, and suggest that the anomalously shallow paleomagnetic inclinations may result from significant inclination error, rather than deposition at low latitudes. Our results demonstrate that detailed provenance analysis of forearc strata complements the incomplete record of arc magmatism and tectonics preserved in bedrock exposures, and permits improved understanding of Late Cretaceous Cordilleran paleogeography

    Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    Get PDF
    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA

    Time scales and modes of reef lagoon infilling in the Maldives and controls on the onset of reef island formation

    Get PDF
    Faro are annular reefs, with reef flats near sea level and lagoons of variable depth, characteristic of both the perimeter and lagoons of Maldivian (Indian Ocean) atolls. Their geomorphic development remains largely unknown, but where faro lagoons (termed velu in Maldivian) have infilled and support reef islands, these provide precious habitable land. Understanding the timing and modes of velu infilling is thus directly relevant to questions about reef island development and vulnerability. Here we use a chronostratigraphic data set obtained from a range of atoll-interior faro with partially to fully filled velu (including those with reef islands) from Baa (South Maalhosmadulu) Atoll, Maldives, to determine time scales and modes of velu infilling, and to identify the temporal and spatial thresholds that control reef island formation. Our data suggest a systematic relationship between faro size, velu infilling, and island development. These relationships likely vary between atolls as a function of atoll lagoon depth, but in Baa Atoll, our data set indicates the following faro-size relationships exist: (1) faros <∼0.5 km2 have velu that were completely infilled by ca. 3000 calibrated years B.P. (cal yr B.P.) with islands having established on these deposits by ca. 2.5 cal kyr B.P.; (2) faros >0.5 km2 but <∼1.25 km2 have velu in late stages of infill, may support unvegetated sand cays and, given sufficient sand supply, may evolve into larger, more permanent islands; and (3) faros >∼1.25 km2 have unfilled (deeper) velu which might only infill over long time scales and which are thus unlikely to support new island initiation. These new observations, when combined with previously published data on Maldivian reef island development, suggest that while the velu of the largest faro are unlikely to fill over the next few centuries (at least), other faro with near-infilled velu may provide important foci for future reef-island building, even under present highstand (and slightly rising) sea levels

    Modeling Sustainable Traffic Behavior: Avoiding Congestion at a Stationary Bottleneck

    Get PDF
    Sustainable traffic behaviour is increasing in importance as traffic volume rises due to population growth. In this paper, a model for traffic flow at a stationary bottleneck is developed to determine the parameters that cause congestion. Towards this goal, traffic density, speed, and delay were acquired during peak and off-peak periods in the morning and afternoon at a stationary bottleneck in Peshawar, KPK, Pakistan. The morning and afternoon peak periods have high densities, low speeds, and considerable delays. Regression models are developed using this data. These results indicate that there is a linear relationship between density and time at the stationary bottleneck and a negative linear relationship between density and speed. Thus, an increase in density increases the time delay and reduces the speed. I comprehensive traffic delay model is characterized by a stationary bottleneck. The Kolmogorov-Smirnov (KS) test and P-values were used to identify the best-fit distribution for speed and density. The binomial and generalized extreme values are considered the best fits for density and speed. The results presented can be used to develop accurate simulation models for stationary bottlenecks to reduce congestion. Doi: 10.28991/CEJ-2022-08-11-02 Full Text: PD

    Internet-of-Video Things Based Real-Time Traffic Flow Characterization

    Get PDF
    Real-world traffic flow parameters are fundamental for devising smart mobility solutions. Though numerous solutions (intrusive and non-intrusive sensors) have been proposed, however, these have serious limitations under heterogeneous and congested traffic conditions. To overcome these limitations, a low-cost real-time Internet-of-Video-Things solution has been proposed. The sensor node (fabricated using Raspberry Pi 3B, Pi cameral and power bank) has the capability to stream 2 Mbps MJPEG video of 640x480 resolution and 20 frames per second (fps). The Camlytics traffic analysis software installed on a Dell desktop is employed for traffic flow characterization. The proposed solution was field-tested with vehicle detection rate of 85.3%. The novelty of the proposed system is that in addition to vehicle count, it has the capability to measure speed, density, time headway, time-space diagram and trajectories. Obtained results can be employed for road network planning, designing and management

    Some comments on spacelike minimal surfaces with null polygonal boundaries in AdSmAdS_m

    Full text link
    We discuss some geometrical issues related to spacelike minimal surfaces in AdSmAdS_m with null polygonal boundaries at conformal infinity. In particular for AdS4AdS_4, two holomorphic input functions for the Pohlmeyer reduced system are identified. This system contains two coupled differential equations for two functions α(z,zˉ)\alpha (z,\bar z) and β(z,zˉ)\beta (z,\bar z), related to curvature and torsion of the surface. Furthermore, we conjecture that, for a polynomial choice of the two holomorphic functions, the relative positions of their zeros encode the conformal invariant data of the boundary null 2n2n-gon.Comment: 13 pages, a note and references added, version to appear in JHE
    corecore