288 research outputs found

    7Li NMR of Normal Human Erythrocytes

    Get PDF
    Lithium has been known to be an effective medication for people with bipolar disorder. The mechanisms of action of lithium in the brain is not very well understood. NMR spectroscopy and imaging are effective both in determining lithium levels in tissue and brain. We have monitored lithium levels in red blood cells. We have been able to separate intra- and extracellular compartments of lithium using shift reagents, thereby obtaining T^1 \u27s of both the compartments. Lithium uptake as a function of hematocrit was monitored weekly over a 3 week period. The time constant of 50 mM lithium uptake at 25°C and 85% hematocrit was found to be 16.5 hrs. The time constant of 1.8 mM lithium uptake at 37 °C and 45% hematocrit was found to be 11.6 hrs. Experiments on the visibility of the quadrupolar nuclei indicate that it is only 74-90% visible and the visibility decreased with decreasing concentrations

    Local charge transfer doping in suspended graphene nanojunctions

    Full text link
    We report electronic transport measurements in nanoscale graphene transistors with gold and platinum electrodes whose channel lengths are shorter than 100 nm, and compare them with transistors with channel lengths from 1 \textmu{}m to 50 \textmu{}m. We find a large positive gate voltage shift in charge neutrality point (NP) for transistors made with platinum electrodes but negligible shift for devices made with gold electrodes. This is consistent with the transfer of electrons from graphene into the platinum electrodes. As the channel length increases, the disparity between the measured NP using gold and platinum electrodes disappears.Comment: 11 pages, 3 figures, to appear in Appl. Phys. Let

    Awareness of eye donation in an urban population in India

    Get PDF
    Purpose: Awareness of eye donation and willingness to pledge eyes for donation was assessed in the urban population of Hyderabad, India, where corneal blindness is a significant problem. Methods: A total of 2522 subjects of all ages, representative of the Hyderabad population, participated in the Andhra Pradesh Eye Disease Study. Subjects >15 years old were interviewed regarding awareness of eye donation and willingness to pledge eyes for donation. Results: Age-gender-adjusted prevalence of awareness of eye donation was 73.8% (95% CI: 66.5-81.0%) but only 1.9% (95% CI: 0.16-3.66%) had pledged eyes. With multivariate analysis, significantly less awareness of eye donation was found in illiterate subjects (OR 0.1; 95% CI: 0.1-0.14), subjects ≥70 years old (OR 0.3; 95% CI: 0.2-0.6), subjects of lower socio-economic status (OR 0.4; 95% CI: 0.3-0.6), females (OR 0.6; 95% CI: 0.5-0.8) and Muslims (OR 0.7; 95% CI: 0.6-0.9). Media was the major source of information about eye donation. Of those aware of eye donation, 44.9% were willing to pledge eyes. Willingness to pledge eyes for donation was significantly lower in Muslims (OR 0.18; 95% CI: 0.13-0.24) than in Hindus and in subjects =60 years old (OR 0.3; 95% CI: 0.2-0.5). Conclusions: These data show that although only a few had pledged eyes there is enough potential in this population for obtaining many more corneas for transplantation. The information about distribution and demographic associations of awareness and willingness for eye donation could help in developing strategies to increase procurement of corneas for dealing with corneal blindness

    Sex differences in the cerebral BOLD signal response to painful heat stimuli

    Get PDF
    There are limited data addressing the question of sex differences in pain-related cerebral processing. This study examined whether pain-related blood oxygenation level-dependent (BOLD) signal change measured with functional magnetic resonance imaging (fMRI) demonstrated sex differences, under conditions of equivalent pain perception. Twenty-eight healthy volunteers (17 women, 11 men) were subject to a fMRI scan while noxious heat stimuli were applied to the dorsum of the left foot. Significant BOLD signal modulation was observed in several nociceptive processing regions of interest (ROIs) in all subjects. There were no sex differences in the spatial extent of BOLD signal change for any ROI, but the signal amplitude was lower for women in most ROIs and significantly so for the primary somatosensory cortex (S1), the midanterior cingulate cortex, and the dorsolateral prefrontal cortex (DLPFC). The BOLD signal response could be positive or negative, and frequently, both polarities were observed within a single ROI. In most ROIs, women show proportionately more voxels with negative signal change than men, and this difference was statistically significant for the S1 and the DLPFC. The time course of the negative signal change was very similar to that of the positive signal change, suggesting that the latter was not “driving” the former. The location of negative and positive clusters formed distinct patterns in several of the ROIs, and these patterns suggest something other than a local “steal” phenomenon as an explanation for the negative signal changes. Sex differences in baseline cerebral blood flow may contribute to the BOLD signal differences observed in this study

    Review of biomechanical studies of arteries and their effect on stent performance

    Get PDF
    This article aims to summarize part of the available literature that reports studies on biomechanical environment in healthy and diseased arteries using various analytical methods

    Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex

    Get PDF
    Introduction: Resting state functional connectivity (FC) is widely used to assess functional brain alterations in patients with chronic pain. However, reports of FC accompanying tonic pain in pain-free persons are rare. A network we term the Descending Pain Modulatory Network (DPMN) is implicated in healthy and pathologic pain modulation. Here, we evaluate the effect of tonic pain on FC of specific nodes of this network: anterior cingulate cortex (ACC), amygdala (AMYG), periaqueductal gray (PAG), and parabrachial nuclei (PBN). Methods: In 50 pain-free participants (30F), we induced tonic pain using a capsaicin-heat pain model. functional MRI measured resting BOLD signal during pain-free rest with a 32 °C thermode and then tonic pain where participants experienced a previously warm temperature combined with capsaicin. We evaluated FC from ACC, AMYG, PAG, and PBN with correlation of self-report pain intensity during both states. We hypothesized tonic pain would diminish FC dyads within the DPMN. Results: Of all hypothesized FC dyads, only PAG and subgenual ACC was weakly altered during pain (F = 3.34; p = 0.074; pain-free\u3epain d = 0.25). After pain induction sACC-PAG FC became positively correlated with pain intensity (R = 0.38; t = 2.81; p = 0.007). Right PBN-PAG FC during pain-free rest positively correlated with subsequently experienced pain (R = 0.44; t = 3.43; p = 0.001). During pain, this connection\u27s FC was diminished (paired t=-3.17; p = 0.0026). In whole-brain analyses, during pain-free rest, FC between left AMYG and right superior parietal lobule and caudate nucleus were positively correlated with subsequent pain. During pain, FC between left AMYG and right inferior temporal gyrus negatively correlated with pain. Subsequent pain positively correlated with right AMYG FC with right claustrum; right primary visual cortex and right temporo-occipitoparietal junction Conclusion: We demonstrate sACC-PAG tonic pain FC positively correlates with experienced pain and resting right PBN-PAG FC correlates with subsequent pain and is diminished during tonic pain. Finally, we reveal PAG- and right AMYG-anchored networks which correlate with subsequently experienced pain intensity. Our findings suggest specific connectivity patterns within the DPMN at rest are associated with subsequently experienced pain and modulated by tonic pain. These nodes and their functional modulation may reveal new therapeutic targets for neuromodulation or biomarkers to guide interventions

    Working Memory in Attention Deficit/Hyperactivity Disorder is Characterized by a Lack of Specialization of Brain Function

    Get PDF
    Working memory impairments are frequent in Attention Deficit/Hyperactivity Disorder (ADHD) and create problems along numerous functional dimensions. The present study utilized the Visual Serial Addition Task (VSAT) and functional magnetic resonance imaging (fMRI) to explore working memory processes in thirteen typically developing (TD) control and thirteen children with ADHD, Combined type. Analysis of Variance (ANOVA) was used to examine both main effects and interactions. Working memory-specific activity was found in TD children in the bilateral prefrontal cortex. In contrast the within-group map in ADHD did not reveal any working-memory specific regions. Main effects of condition suggested that the right middle frontal gyrus (BA6) and the right precuneus were engaged by both groups during working memory processing. Group differences were driven by significantly greater, non-working memory-specific, activation in the ADHD relative to TD group in the bilateral insula extending into basal ganglia and the medial prefrontal cortex. A region of interest analysis revealed a region in left middle frontal gyrus that was more active during working memory in TD controls. Thus, only the TD group appeared to display working memory-modulated brain activation. In conclusion, children with ADHD demonstrated reduced working memory task specific brain activation in comparison to their peers. These data suggest inefficiency in functional recruitment by individuals with ADHD represented by a poor match between task demands and appropriate levels of brain activity

    Outcome of pterygium surgery: analysis over 14 years

    Get PDF
    Aim: To report the outcome of pterygium surgery performed at a tertiary eye care centre in South India. Methods: Retrospective analysis of medical records of 920 patients (989 eyes) with primary and recurrent pterygia operated between January 1988 and December 2001. The demographic variables, surgical technique (bare sclera, primary closure, amniotic membrane transplantation (AMT), conjunctival autograft (CAG), conjunctival-limbal autograft (CLAG), or surgical adjuvants), recurrences and postoperative complications were analysed. Results: A total of 496 (53.9%) were male and 69 (7.5%) had bilateral pterygia. Bare sclera technique was performed in 267 (27.0%) eyes, primary conjunctival closure in 32 (3.2%), AMG in 123 (12.4%), CAG in 429 (43.4%), and CLAG in 70 (7.1%). Adjuvant mitomycin C was used in 44 (4.4%) cases. The mean duration of follow-up was 8.917.0 and 5.98.8 months for unilateral primary and recurrent pterygia, respectively. The overall recurrence rate was 178 (18.0%). Following primary and recurrent unilateral pterygium excision respectively, recurrences were noted in 46 (19.4%) and 1 (33.3%) eyes after bare sclera technique, five (16.7%) and 0 after primary closure, 28 (26.7%) and 0 with AMG, 42 (12.2%) and five (31.3%) with CAG, and nine (17.3%) and two (40%) with CLAG. Recurrences were significantly more in males with primary (23.3 vs10.7%, P<0.0001) and recurrent (26.7 vs0%, P=0.034) pterygia, and in those below 40 years (25.2 vs14.8%, P=0.003). Conclusion: CAG appears to be an effective modality for primary and recurrent pterygia. Males and patients below 40 years face greater risk of recurrence. Bare sclera technique has an unacceptably high recurrence. Prospective studies comparing CAG, CLAG, and AMG for primary and recurrent pterygia are needed

    Flat inkjet-printed copper induction coils for magnetostrictive structural health monitoring: A comparison with bulk air coils and an anisotropic magnetoresistive sensor (AMR) sensor

    Get PDF
    Structural health monitoring (SHM) represents the next generation of carbon fiber-reinforced composite nondestructive testing. One challenge facing the application of magnetostrictive SHM is the lightweighting and ease of installation of actuators and sensors. Inkjet printing (IJP) technology is well suited to produce miniaturized electronic induction sensors that can be paired with magnetostrictive actuators to detect strain. These sensors have several advantages: their thicknesses can be minimized, the surface area can be maximized to increase sensitivity, and complex multifilar coil configurations can be fabricated. A parametric study of the efficacy of IJP induction coils with different parameters (number of coils, monofilar/bifilar, size) tested on a number of actuator-functionalized composite coupons (FeSiB ribbon and impregnated epoxy sensors) is conducted. The samples are characterized by measuring their inductance response through induced strains. Increased sensitivity and accuracy of the 10-turn monofilar IJP sensor are shown with respect to 1) 70-turn hand-wound coils, 2) a three-axis AMR sensor, and 3) other IJP actuators with <10 turns. This is attributed to increased contact area to the composite surface and the requirement of minimum sensitivity (i.e., the number of turns and surface area) for strain detection
    • …
    corecore