1,268 research outputs found

    Optical conductivity in cluster dynamical mean field theory: formalism and application to high temperature superconductors

    Full text link
    The optical conductivity of the one-band Hubbard model is calculated using the 'Dynamical Cluster Approximation' implementation of dynamical mean field theory for parameters appropriate to high temperature copper-oxide superconductors. The calculation includes vertex corrections and the result demonstrates their importance. At densities of one electron per site, an insulating state is found with gap value and above-gap absorption consistent with measurements. As carriers are added the above gap conductivity rapidly weakens and a three component structure emerges, with a low frequency 'Drude' peak, a mid-infrared absorption, and a remnant of the insulating gap. The mid-infrared feature obtained at intermediate dopings is shown to arise from a pseudogap structure in the density of states. On further doping the conductivity evolves to the Drude peak plus weakly frequency dependent tail structure expected for less strongly correlated metals.Comment: 5 pages, 3 figure

    A comparative DMFT study of the eg-orbital Hubbard model in thin films

    Full text link
    Heterostructures of transition-metal oxides emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.Comment: 11 pages, 11 figure

    IUE observations of Seyfert galaxies

    Get PDF
    The L alpha/H beta ratio and line profiles for several galaxies are presented. The continuous energy distribution of NGC 4151 and MKN 509 are presented from the X-ray region to the infrared

    [TiII] and [NiII] emission from the strontium filament of eta Carinae

    Full text link
    We study the nature of the [TiII] and [NiII] emission from the so-called strontium filament found in the ejecta of eta Carinae. To this purpose we employ multilevel models of the TiII and NiII systems which are used to investigate the physical condition of the filament and the excitation mechanisms of the observed lines. For the TiII ion, for which no atomic data was previously available, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. It is found that the observed spectrum is consistent with the lines being excited in a mostly neutral region with an electron density of the order of 10710^7 cm−3^{-3} and a temperature around 6000 K. In analyzing three observations with different slit orientations recorded between March~2000 and November~2001 we find line ratios that change among various observations, in a way consistent with changes of up to an order of magnitude in the strength of the continuum radiation field. These changes result from different samplings of the extended filament, due to the different slit orientations used for each observation, and yield clues on the spatial extent and optical depth of the filament. The observed emission indicates a large Ti/Ni abundance ratio relative to solar abundances. It is suggested that the observed high Ti/Ni ratio in gas is caused by dust-gas fractionation processes and does not reflect the absolute Ti/Ni ratio in the ejecta of \etacar. We study the condensation chemistry of Ti, Ni and Fe within the filament and suggest that the observed gas phase overabundance of TiComment: 14 paginas, 12 figure

    Numerically Exact Long Time Behavior of Nonequilibrium Quantum Impurity Models

    Full text link
    A Monte Carlo sampling of diagrammatic corrections to the non-crossing approximation is shown to provide numerically exact estimates of the long-time dynamics and steady state properties of nonequilibrium quantum impurity models. This `bold' expansion converges uniformly in time and significantly ameliorates the sign problem that has heretofore limited the power of real-time Monte Carlo approaches to strongly interacting real-time quantum problems. The new approach enables the study of previously intractable problems ranging from generic long time nonequilibrium transport characteristics in systems with large onsite repulsion to the direct description of spectral functions on the real frequency axis in Dynamical Mean Field Theory
    • …
    corecore