1,181 research outputs found

    Fluvial valleys on Martian volcanoes

    Get PDF
    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection

    Ego, scriptor cantilenae : The Cantos and Ezra Pound

    Get PDF
    Can poetry make new the world? Ezra Pound thought so. In Cantico del Sole he said: The thought of what America would be like/ If the Classics had a wide circulation/ Troubles me in my sleep (Personae 183). He came to write an 815 page poem called The Cantos in which he presents fragments drawn from the literature and documents of the past in an attempt to build a new world, a paradiso terreste (The Cantos 802). This may be seen as either a noble gesture or sheer egotism. Pound once called The Cantos the tale of the tribe (Guide to Kulchur 194), and I believe this is so, particularly if one associates this statement with Allen Ginsberg\u27s concerning The Cantos as a model of a mind, like all our minds (Ginsberg 14-16). But Pound was a Fascist and anti-Semite, was he not? This is what I think faces a reader of Pound: Perhaps the reader finds he is not so different from Pound, or any other mind. Perhaps that is what is most disturbing. After all, do we not each wish to build our own little terrestrial paradise

    Measuring autonomy and emergence via Granger causality

    Get PDF
    Concepts of emergence and autonomy are central to artificial life and related cognitive and behavioral sciences. However, quantitative and easy-to-apply measures of these phenomena are mostly lacking. Here, I describe quantitative and practicable measures for both autonomy and emergence, based on the framework of multivariate autoregression and specifically Granger causality. G-autonomy measures the extent to which the knowing the past of a variable helps predict its future, as compared to predictions based on past states of external (environmental) variables. G-emergence measures the extent to which a process is both dependent upon and autonomous from its underlying causal factors. These measures are validated by application to agent-based models of predation (for autonomy) and flocking (for emergence). In the former, evolutionary adaptation enhances autonomy; the latter model illustrates not only emergence but also downward causation. I end with a discussion of relations among autonomy, emergence, and consciousness

    Evolution of the global water cycle on Mars: The geological evidence

    Get PDF
    The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments

    Fluvial valleys in the heavily cratered terrains of Mars: Evidence for paleoclimatic change?

    Get PDF
    Whether the formation of the Martian valley networks provides unequivocal evidence for drastically different climatic conditions remains debatable. Recent theoretical climate modeling precludes the existence of a temperate climate early in Mars' geological history. An alternative hypothesis suggests that Mars had a globally higher heat flow early in its geological history, bringing water tables to within 350 m of the surface. While a globally higher heat flow would initiate ground water circulation at depth, the valley networks probably required water tables to be even closer to the surface. Additionally, it was previously reported that the clustered distribution of the valley networks within terrain types, particularly in the heavily cratered highlands, suggests regional hydrological processes were important. The case for localized hydrothermal systems is summarized and estimates of both erosion volumes and of the implied water volumes for several Martian valley systems are presented

    Ancient oceans and Martian paleohydrology

    Get PDF
    The global model of ocean formation on Mars is discussed. The studies of impact crater densities on certain Martian landforms show that late in Martian history there could have been coincident formation of: (1) glacial features in the Southern Hemisphere; (2) ponded water and related ice features in the northern plains; (3) fluvial runoff on Martian uplands; and (4) active ice-related mass-movement. This model of transient ocean formation ties these diverse observations together in a long-term cyclic scheme of global planetary operation

    Observations of the geology and geomorphology of the 1999 Marsokhod test site

    Get PDF
    The Marsokhod rover returned data from six stations that were used to decipher the geomorphology and geology of a region not previously visited by members of the geomorphology field team. Satellite images and simulated descent images provided information about the regional setting. The landing zone was on an alluvial apron flanking a mountain block to the west and playa surface to the east. Rover color images, infrared spectra analysis of the mountains, and the apron surface provided insight into the rock composition of the nearby mountains. From the return data the geomorphology team interpreted the region to consist of compressionally deformed, ancient marine sediments and igneous rocks exposed by more recent extensional tectonics. Unconsolidated alluvial materials blanket the lower flanks of the mountains. An ancient shoreline cut into alluvial material marks a high stand of water during a past, wetter climate period. Playa sediments floor a present-day, seasonally, dry lake. Observations made by the rover using panoramic and close-up (hand specimens—scale) image data and color scene data confirmed the presence of boulders, cobbles, and fines of various provinces. Rover traverses to sites identified as geologically distinct, such as a fan, channel, shoreline, and playa, provided useful clues to the geologic interpretations. Analysis of local rocks was given context only through comparison with distant geologic features. These results demonstrated the importance of a multifaceted approach to site interpretation through comparison of interpretations derived by differing geologic techniques

    Episomal Viral cDNAs Identify a Reservoir That Fuels Viral Rebound after Treatment Interruption and That Contributes to Treatment Failure

    Get PDF
    Viral reservoirs that persist in HIV-1 infected individuals on antiretroviral therapy (ART) are the major obstacle to viral eradication. The identification and definition of viral reservoirs in patients on ART is needed in order to understand viral persistence and achieve the goal of viral eradication. We examined whether analysis of episomal HIV-1 genomes provided the means to characterize virus that persists during ART and whether it could reveal the virus that contributes to treatment failure in patients on ART. For six individuals in which virus replication was highly suppressed for at least 20 months, proviral and episomal genomes present just prior to rebound were phylogenetically compared to RNA genomes of rebounding virus after therapy interruption. Episomal envelope sequences, but not proviral envelope sequences, were highly similar to sequences in rebounding virus. Since episomes are products of recent infections, the phylogenetic relationships support the conclusion that viral rebound originated from a cryptic viral reservoir. To evaluate whether the reservoir revealed by episomal sequence analysis was of clinical relevance, we examined whether episomal sequences define a viral population that contributes to virologic failure in individuals receiving the CCR5 antagonist, Vicriviroc. Episomal envelope sequences at or near baseline predicted treatment failure due to the presence of X4 or D/M (dual/mixed) viral variants. In patients that did not harbor X4 or D/M viruses, the basis for Vicriviroc treatment failure was indeterminate. Although these samples were obtained from viremic patients, the assay would be applicable to a large percentage of aviremic patients, based on previous studies. Summarily, the results support the use of episomal HIV-1 as an additional or alternative approach to traditional assays to characterize virus that is maintained during long-term, suppressive ART

    Flavonol Sulfotransferase-Like cDNA Clone from Flaveria bidentis

    Full text link
    • …
    corecore