1,381 research outputs found

    Dirac parameters and topological phase diagram of Pb1-xSnxSe from magneto-spectroscopy

    Full text link
    Pb1-xSnxSe hosts 3D massive Dirac fermions across the entire composition range for which the crystal structure is cubic. In this work, we present a comprehensive experimental mapping of the 3D band structure parameters of Pb1-xSnxSe as a function of composition and temperature. We cover a parameter space spanning the band inversion that yields its topological crystalline insulator phase. A non-closure of the energy gap is evidenced in the vicinity of this phase transition. Using magnetooptical Landau level spectroscopy, we determine the energy gap, Dirac velocity, anisotropy factor and topological character of Pb1-xSnxSe epilayers grown by molecular beam epitaxy on BaF2 (111). Our results are evidence that Pb1-xSnxSe is a model system to study topological phases and the nature of the phase transition.Comment: Submitte

    Linear Temperature Variation of the Penetration Depth in YBCO Thin Films

    Full text link
    We have measured the penetration depth λ(T)\lambda(T) on YBa2Cu3O7\rm YBa_{2}Cu_{3}O_{7} thin films from transmission at 120, 330 and 510~GHz, between 5 and 50~K. Our data yield simultaneously the absolute value and the temperature dependence of λ(T)\lambda(T). In high quality films λ(T)\lambda(T) exhibits the same linear temperature dependence as single crystals, showing its intrinsic nature, and λ(0)=1750A˚\lambda(0)=1750\,{\rm \AA}. In a lower quality one, the more usual T2T^2 dependence is found, and λ(0)=3600A˚\lambda(0)=3600\,{\rm \AA}. This suggests that the T2T^2 variation is of extrinsic origin. Our results put the dd-wave like interpretation in a much better position.Comment: 12 pages, revtex, 4 uuencoded figure

    Direct surface cyclotron resonance terahertz emission from a quantum cascade structure

    Full text link
    A strong magnetic field applied along the growth direction of a semiconductor quantum well gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a quantum cascade structure with a static magnetic field, we can selectively inject electrons into the excited Landau level of a quantum well and realize a tunable surface emitting device based on cyclotron emission. By applying the appropriate magnetic field between 0 and 12 T, we demonstrate emission from a single device over a wide range of frequencies (1-2 THz and 3-5 THz)

    Magnetotransport Properties and Subband Structure of the Two-Dimensional Electron Gas in the Inversion Layer of Hg1-xCdxTe Bicrystals

    Get PDF
    The electronic and magnetotransport properties of conduction electrons in the grain boundary interface of p-type Hg1-xCdxTe bicrystals are investigated. The results clearly demonstrate the existence of a two-dimensional degenerate n-type inversion layer in the vicinity of the grain boundary. The observed quantum oscillations of the magnetoresistivity result from a superposition of the Shubnikov-de Haas effect in several occupied electric subbands. The occupation of higher subbands is presumable depending on the total carrier density ns of the inversion layer. Electron densities, subband energies, and effective masses of these electric subbands in samples with different total densities are determined. The effective masses of lower subbands are markedly different from the band edge values of the bulk material, their values decrease with decreasing electron density and converging to the bulk values at lower densities. This agrees with predictions of the triangular potential well model and a pronounced nonparabolicity of the energy bands in Hg1-xCdxTe. At high magnetic fields (B > 10 T) it is experimentally verified that the Hall resistivity xy is quantized into integer multiplies of h/e2

    Massive and massless Dirac fermions in Pb1-xSnxTe topological crystalline insulator probed by magneto-optical absorption

    Get PDF
    Dirac fermions in condensed matter physics hold great promise for novel fundamental physics, quantum devices and data storage applications. IV-VI semiconductors, in the inverted regime, have been recently shown to exhibit massless topological surface Dirac fermions protected by crystalline symmetry, as well as massive bulk Dirac fermions. Under a strong magnetic field (B), both surface and bulk states are quantized into Landau levels that disperse as B^1/2, and are thus difficult to distinguish. In this work, magneto-optical absorption is used to probe the Landau levels of high mobility Bi-doped Pb0.54Sn0.46Te topological crystalline insulator (111)-oriented films. The high mobility achieved in these thin film structures allows us to probe and distinguish the Landau levels of both surface and bulk Dirac fermions and extract valuable quantitative information about their physical properties. This work paves the way for future magnetooptical and electronic transport experiments aimed at manipulating the band topology of such materials.Comment: supplementary material included, to appear in Scientific Report

    Hole-LO phonon interaction in InAs/GaAs quantum dots

    Get PDF
    We investigate the valence intraband transitions in p-doped self-assembled InAs quantum dots using far-infrared magneto-optical technique with polarized radiation. We show that a purely electronic model is unable to account for the experimental data. We calculate the coupling between the mixed hole LO-phonon states using the Fr\"ohlich Hamiltonian, from which we determine the polaron states as well as the energies and oscillator strengths of the valence intraband transitions. The good agreement between the experiments and calculations provides strong evidence for the existence of hole-polarons and demonstrates that the intraband magneto-optical transitions occur between polaron states
    corecore