3 research outputs found

    Palmer-Chalker correlations in the XY pyrochlore antiferromagnet Er2Sn2O7

    Full text link
    \ersn\, is considered, together with \erti, as a realization of the XY antiferromagnet on the pyrochlore lattice. We present magnetization measurements confirming that \ersn\, does not order down to 100 mK but exhibits a freezing below 200 mK. Our neutron scattering experiments evidence the strong XY character of the \er moment and point out the existence of short range correlations in which the magnetic moments are in peculiar configurations, the Palmer-Chalker states, predicted theoretically for an XY pyrochlore antiferromagnet with dipolar interactions. Our estimation of the \ersn\, parameters confirm the role of the latter interactions on top of relatively weak and isotropic exchange couplings

    Change of cobalt magnetic anisotropy and spin polarization with alkanethiolates self-assembled monolayers

    Get PDF
    International audience; We demonstrate that the deposition of a self-assembled monolayer of alkanethiolates on a 1 nm thick cobalt ultrathin film grown on Au(111) induces a spin reorientation transition from in-plane to out-of-plane magnetization. Using ab initio calculations, we show that a methanethiolate layer changes slightly both the magnetocrystalline and shape anisotropy, both effects almost cancelling each other out for a 1 nm Co film. Finally, the change in hysteresis cycles upon alkanethiolate adsorption could be assigned to a molecular-induced roughening of the Co layer, as shown by STM. In addition, we calculate how a methanethiolate layer modifies the spin density of states of the Co layer and we show that the spin polarization at the Fermi level through the organic layer is reversed as compared to the uncovered Co. These results give new theoretical and experimental insights for the use of thiol-based self-assembled monolayers in spintronic devices
    corecore