56 research outputs found

    A New Algorithm to Classify the Homogeneity of ERS-2 Wave Mode SAR Imagette

    Get PDF
    A new classification parameter is developed using 1535 ERS-2 wave mode synthetic aperture radar (SAR) test imagettes to better differentiate homogeneous and inhomogeneous imagettes. The comparison between the new parameter (Min) and the previous one (Inhomo) (Schulz-Stellenfleth and Lehner, 2004) was done under varied threshold values of Inhomo. It is concluded that the performance of ‘Min’ is much better than ‘Inhomo’ when applying to the 1535 test imagettes. Furthermore, both Min and Inhomo are applied to nearly 1 million imagettes collected for the period from 1 September 1998 to 30 November 2000. The comparisons of the global inhomogeneous distribution between ‘Min’ and ‘Inhomo’ reveal that both the areas and percentage of inhomogeneity calculated by ‘Min’ are larger than that calculated by ‘Inhomo’. By analyzing the low wind speed distribution of HOAPS data, we found that low wind speed over the ocean is one of the key reasons for the inhomogeneity of SAR imagettes

    The Composite Face Effect Between Young and Older Chinese Adults Remains Stable

    Get PDF
    Holistic face perception is often considered to be a cornerstone of face processing. However, the development of the ability to holistically perceive faces in East Asian individuals is unclear. Therefore, we measured and compared holistic face processing in groups of Chinese children, young adults, and older adults by employing the complete composite face paradigm. The results demonstrate a similar magnitude of the composite effect in all three groups although face recognition performance in the task was better in young adults than in the two other groups. These findings suggest that holistic face perception in Eastern individuals is stable from late childhood to at least age 60, whereas face memory may be subject to later development and earlier decline.Peer Reviewe

    A Compact Dual-Band MIMO Antenna for Sub-6 GHz 5G Terminals

    Get PDF
    In this paper, a dual-band multiple-input-multiple-output (MIMO) antenna is proposed for fifth-generation (5G) wireless communication terminals. The measured −10 dB impedance bandwidths of 380 MHz (3.34–3.72 GHz) and 560 MHz (4.57–5.13 GHz) can cover the 3.4–3.6 GHz and 4.8–5 GHz 5G bands. The single antenna element of this proposed MIMO is composed of an F-shaped feed strip and an inverted L-shaped radiation strip. A defected ground structure is employed to obtain a good isolation performance, whereby the measured isolation between the antenna elements is observed to be larger than 23 dB. The measured total radiation efficiencies at 3.5 GHz and 4.9 GHz are 76.65% and 71.93%, respectively. Besides, the calculated envelope correlation coefficients (ECC) are less than 0.00125 and 0.01164 at the low-frequency and high-frequency bands, respectively. Furthermore, the specific absorption ratio (SAR) analysis of the antenna verifies that it qualifies for 5G terminals

    The effect of layer thickness ratio on the drug release behavior of alternating layered composite prepared by layer-multiplying co-extrusion

    Get PDF
    Multi-layered drug delivery (MLDD) system has promising potential to achieve controlled release. However, existing technologies face difficulties in regulating the number of layers and layer-thickness ratio. In our previous works, layer-multiplying co-extrusion (LMCE) technology was applied to regulate the number of layers. Herein, we utilized layer-multiplying co-extrusion technology to modulate the layer-thickness ratio to expand the application of LMCE technology. Four-layered poly (ε-caprolactone)-metoprolol tartrate/poly (ε-caprolactone)-polyethylene oxide (PCL-MPT/PEO) composites were continuously prepared by LMCE technology, and the layer-thickness ratios for PCL-PEO layer and PCL-MPT layer were set to be 1:1, 2:1, and 3:1 just by controlling the screw conveying speed. The in vitro release test indicated that the rate of MPT release increased with decreasing the thickness of the PCL-MPT layer. Additionally, when PCL-MPT/PEO composite was sealed by epoxy resin to eliminate the edge effect, sustained release of MPT was achieved. The compression test confirmed the potential of PCL-MPT/PEO composites as bone scaffolds

    Fracture characterization using diffraction attributes in tight sandstone reservoirs: A case study from Keshen Gas Field, Tarim Basin

    Get PDF
    Reservoir characterization is indispensable in the development of the Cretaceous structural fractured Bashijiqike tight sandstone reservoir formation, which is the main production zone and known to exhibit high structural variability imparting on production at different scales. We performed an improved workflow based on diffraction extraction and analysis to characterize the fractures especially in locations proximal to the wellbore. Diffraction attributes significantly provide more details in the area, which are proven by three well FMI images and dipmeter logs. The results show that structural fractures in the study area are dominated by the upright shearing stress forming fractures with medium to high angles. The tending direction is also delineated to be similar despite the significant well offset, which is an indication of the underlying tectonic framework responsible for the overall architecture of this section of the basin. We opine due to our success that the proposed approach may be helpful to describe the distribution and direction of fractures in naturally fractured reservoirs tied by the well logs

    An Efficient Finite-Difference Stencil with High-Order Temporal Accuracy for Scalar Wave Modeling

    No full text
    Solving a scalar wave equation by the finite-difference (FD) method is a key step for advanced seismic imaging, in which the numerical accuracy is significantly affected by the FD stencil. High-order spatial and temporal approximations of the FD stencil can effectively improve the numerical accuracy and mitigate dispersion error. However, the huge costs of high-order stenciling in computation and storage hinder the application of large-scale modeling. In this paper, we propose a new efficient FD stencil with high-order temporal accuracy for numerical seismic modeling. The new stencil has a radial shape, including a standard cross-stencil and a rotated cross-stencil with a (Ï€/4) degree, and it can reach sixth-order accuracy in the time approximation. Compared with the well-known temporal high-order cross-rhombus stencil, the new stencil involves fewer grid nodes and thus has higher computational efficiency, especially in high-order cases. Dispersion and stability analyses show that the new stencil has great improvements in mitigating the dispersion error and stability problem compared with the conventional methods. Numerical accuracy and execution time analyses show that the new stencil is an economical and feasible method for large-scale modeling

    AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance

    No full text
    Velocity analysis using the semblance spectrum can provide an effective velocity model for advanced seismic imaging technology, in which the picking accuracy of velocity analysis is significantly affected by the resolution of the semblance spectrum. However, the peak broadening of the conventional semblance spectrum leads to picking uncertainty, and it cannot deal with the amplitude-variation-with-offset (AVO) phenomenon. The well-known AB semblance can process the AVO anomalies, but it has a lower resolution compared with conventional semblance. To improve the resolution of the AB semblance spectrum, we propose a new weighted AB semblance based on principal component analysis (PCA). The principal components or eigenvalues of seismic events are highly sensitive to the components with spatial coherence. Thus, we utilized the principal components of the normal moveout (NMO)-corrected seismic events with different scanning velocities to construct a weighting function. The new function not only has a high resolution for velocity scanning, but it is also a friendly method for the AVO phenomenon. Numerical experiments with the synthetic and field seismic data sets proved that the new method significantly improves resolution and can provide more accurate picked velocities compared with conventional methods

    AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance

    No full text
    Velocity analysis using the semblance spectrum can provide an effective velocity model for advanced seismic imaging technology, in which the picking accuracy of velocity analysis is significantly affected by the resolution of the semblance spectrum. However, the peak broadening of the conventional semblance spectrum leads to picking uncertainty, and it cannot deal with the amplitude-variation-with-offset (AVO) phenomenon. The well-known AB semblance can process the AVO anomalies, but it has a lower resolution compared with conventional semblance. To improve the resolution of the AB semblance spectrum, we propose a new weighted AB semblance based on principal component analysis (PCA). The principal components or eigenvalues of seismic events are highly sensitive to the components with spatial coherence. Thus, we utilized the principal components of the normal moveout (NMO)-corrected seismic events with different scanning velocities to construct a weighting function. The new function not only has a high resolution for velocity scanning, but it is also a friendly method for the AVO phenomenon. Numerical experiments with the synthetic and field seismic data sets proved that the new method significantly improves resolution and can provide more accurate picked velocities compared with conventional methods

    Vertebral Artery Dissection Probably Caused by Massage: A Case Report

    No full text
    • …
    corecore