19 research outputs found

    Effects of drought stress on hybrids of Vigna radiata at germination stage

    Get PDF
    Drought is one the critical abiotic factors that reduces the germination, growth and yield of crops. Therefore the present project was designed with the objective to screen the best drought tolerant hybrid of Vigna radiata. Genetic variations for drought tolerance among these hybrids were assessed by simple and efficient technique. Seven hybrids of V. radiata (9801, 7002, 9706, 08003, 07007, 97012 and 08007) were used for screening against three levels of drought stress (zero, control), 5% (–0.05 MPa) and 10% (–0.1 MPa) induced by Polyethyleneglycol (PEG6000). A higher proline content was observed in 07007 (6.10 μg/g fresh weight) as compared to all other hybrids. Treated seedlings of each hybrid were compared with their respective control to evaluate the differences in their growth under drought. Different parameters such as percentage of germination, germination stress tolerance index (GSI), shoot and root weights (bath fresh and dry) and lengths, root length stress index (RLSI), dry matter stress index (DMSI) and plant height stress index (PHSI) showed considerable variations. Germination percentage, shoot weights, PHSI and DMSI decreased in all hybrids along with the increase of PEG induced drought stress (5% and 10% PEG). In contrary, root weights and RLSI were increased under drought. Overall 07007 showed a better performance, and can therefore be classified as a drought tolerant hybrid

    Less Conserved LRRs Is Important for BRI1 Folding

    Get PDF
    Brassinosteroid insensitive 1 (BRI1) is a multidomain plant leucine-rich repeat receptor-like kinase (LRR-RLK), belongs to the LRR X subfamily. BRI1 perceives plant hormone brassinosteroids (BRs) through its extracellular domain that constitutes of LRRs interrupted by a 70 amino acid residue island domain (ID), which activates the kinase domain (KD) in its intracellular domain to trigger BR response. Thus, the KD and the ID of BRI1 are highly conserved and greatly contribute to BR functions. In fact, most bri1 mutants are clustered in or surrounded around the ID and the KD. However, the role of the less conserved LRR domains, particularly the first few LRRs after the signal peptide, is elusive. Here, we report the identification of a loss-of-function mutant bri1-235 that carries a mutation in the less conserved fourth LRR of BRI1 extracellular domain in Arabidopsis. This mutant had a base alteration from C to T, resulting in an amino acid substitution from serine to phenylalanine at the 156th position of BRI1. Compared with the wild-type plants, bri1-235 exhibited round leaves, prolonged life span, shorter stature, and approximately normal fertility under light conditions. The bri1-235 mutant was less sensitive to exogenous brassinolide under normal conditions. Importantly, both wild-type BRI1 expression and a sbi1 mutant that activates BRI1 rescued bri1-235 and resembled the wild type. Furthermore, bri1-235 protein was localized in endoplasmic reticulum rather than plasma membrane, suggestive of a cause for reducing BR sensitive in bri1-235. Taken together, our findings provide an insight into the role of the less conserved LRRs of BRI1, shedding light on the role of LRRs in a variety of LRR-RLKs that control numerous processes of plant growth, development, and stress response

    Genetic and clinical assessment of 2009 pandemic influenza in southern China

    Get PDF
    Introduction: South China has a proven role in the global epidemiology of previous influenza outbreaks due to its dual seasonal pattern. We present the virologic, genetic and clinical characterization of pandemic H1N1 influenza infection (pH1N1) in Shantou and Nanchang, cities in southern China, during the second wave of the 2009-2010 pandemic. Methodology: Nasopharyngeal swabs were collected from 165 individuals with influenza-like illness (ILI) who presented to the hospitals in Shantou and Nanchang. Laboratory diagnosis and characterization was performed by real-time PCR, virus isolation in embryonated chicken eggs, and sequencing. Results: pH1N1 activity was sustained in three different temporal patterns throughout the study period. The overall positivity rate of pH1N1 was 50% with major distribution among young adults between the ages of 13 and 30 years. High fever, cough, expectoration, chest pain, myalgia, nasal discharge and efficient viral replication were observed as major clinical markers whereas a substantial number of afebrile cases (17%) was also observed. Rate of hospitalization and disease severity (39%) and recovery (100%) were also high within the region. Furthermore, severe complications were likely to develop in young adults upon pH1N1 infection. Genetic characterization of the HA and NA genes of pH1N1 strains exhibited homogenous spread of pH1N1 strains with 99% identity with prototypic strains; however, minor unique mutations were also observed in the HA gene. Conclusion: The study illustrates the detailed characteristics of 2009 influenza pandemic in southern parts of China that might help to strategize preparedness for future pandemics and subsequent influenza seasons.</br

    Heterogeneous virulence of pandemic 2009 influenza H1N1 virus in mice

    Get PDF
    Background Understanding the pathogenesis of influenza infection is a key factor leading to the prevention and control of future outbreaks. Pandemic 2009 Influenza H1N1 infection, although frequently mild, led to a severe and fatal form of disease in certain cases that make its virulence nature debatable. Much effort has been made toward explaining the determinants of disease severity; however, no absolute reason has been established. Results This study presents the heterogeneous virulence of clinically similar strains of pandemic 2009 influenza virus in human alveolar adenocarcinoma cells and mice. The viruses were obtained from patients who were admitted in a local hospital in China with a similar course of infection and recovered. The A/Nanchang/8002/2009 and /Nanchang/8011/2009 viruses showed efficient replication and high lethality in mice while infection with A/Nanchang/8008/2009 was not lethal with impaired viral replication, minimal pathology and modest proinflammatory activity in lungs. Sequence analysis displayed prominent differences between polymerase subunits (PB2 and PA) of viral genomes that might correlate with their different phenotypic behavior. Conclusions The study confirms that biological heterogeneity, linked with the extent of viral replication, exists among pandemic H1N1 strains that may serve as a benchmark for future investigations on influenza pathogenesis.</br

    The Role of SBI2/ALG12/EBS4 in the Regulation of Endoplasmic Reticulum-Associated Degradation (ERAD) Studied by a Null Allele

    No full text
    Redundancy and lethality is a long-standing problem in genetics but generating minimal and lethal phenotypes in the knockouts of the same gene by different approaches drives this problem to a new high. In Asn (N)-linked glycosylation, a complex and ubiquitous cotranslational and post-translational protein modification required for the transfer of correctly folded proteins and endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, ALG12 (EBS4) is an α 1, 6-mannosyltransferase catalyzing a mannose into Glc3Man9GlcNAc2. In Arabidopsis, T-DNA knockout alg12-T is lethal while likely ebs4 null mutants isolated by forward genetics are most healthy as weak alleles, perplexing researchers and demanding further investigations. Here, we isolated a true null allele, sbi2, with the W258Stop mutation in ALG12/EBS4. sbi2 restored the sensitivity of brassinosteroid receptor mutants bri1-5, bri1-9, and bri1-235 with ER-trapped BRI1 to brassinosteroids. Furthermore, sbi2 maturated earlier than the wild-type. Moreover, concomitant with impaired and misfolded proteins accumulated in the ER, sbi2 had higher sensitivity to tunicamycin and salt than the wild-type. Our findings thus clarify the role of SBI2/ALG12/EBS4 in the regulation of the ERAD of misfolded glycoproteins, and plant growth and stress response. Further, our study advocates the necessity and importance of using multiple approaches to validate genetics study

    Enhancing the field emission properties of Se-doped GaN nanowires

    No full text
    Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20-120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm−1 ) compared with the pure GaN NWs (7.0 V μm−1 ). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs

    Engineering Chimeras by Fusing Plant Receptor-like Kinase EMS1 and BRI1 Reveals the Two Receptors&rsquo; Structural Specificity and Molecular Mechanisms

    No full text
    Brassinosteriods (BRs) are plant hormones essential for plant growth and development. The receptor-like kinase (RLK) BRI1 perceives BRs to initiate a well-known transduction pathway which finally activate the transcription factors BZR1/BES1 specifically regulating BR-mediated gene expression. The RLK EMS1 governs tapetum formation via the same signaling pathway shared with BRI1. BRI1 and EMS1 have a common signal output, but the gene structural specificity and the molecular response remain unclear. In this study, we identified that the transmembrane (TM), intracellular juxtamembrane (iJM), kinase, and leucin-rich repeats 1-13 (LRR1-13) domains of EMS1 could replace the corresponding BRI1 domain to maintain the BR receptor function, whereas the extracellular juxtamembrane (eJM) and LRR1-14 domains could not, indicating that the LRR14-EJM domain conferred functional specificity to BRI1. We compared the kinase domains of EMS1 and BRI1, and found that EMS1&rsquo;s kinase activity was weaker than BRI1&rsquo;s. Further investigation of the specific phosphorylation sites in BRI1 and EMS1 revealed that the Y1052 site in the kinase domain was essential for the BRI1 biological function, but the corresponding site in EMS1 showed no effect on the biological function of EMS1, suggesting a site regulation difference in the two receptors. Furthermore, we showed that EMS1 shared the substrate BSKs with BRI1. Our study provides insight into the structural specificity and molecular mechanism of BRI1 and EMS1, as well as the origin and divergence of BR receptors

    Presentation_1_Myopia and axial length in school-aged children before, during, and after the COVID-19 lockdown–A population-based study.ZIP

    No full text
    BackgroundMyopic shift had been observed during the COVID-19 lockdown in young school children. It remains unknown whether myopic shift is accompanied with increase in axial length. We aimed to evaluate the impact of the COVID-19 lockdown on myopia and axial length of school children in China by comparing them before, during and after the lockdown.MethodsIn this population-based cross-sectional study, school-based myopia screenings were conducted in the Fall of 2019, 2020, and 2021 (representing before, during and after COVID-19 lockdown respectively) in Chengdu, China. Myopia screenings were performed on 83,132 students aged 6 to 12 years. Non-cycloplegic refractive error was examined using NIDEK auto-refractor (ARK-510A; NIDEK Corp., Tokyo, Japan) and axial length was measured using AL-Scan (NIDEK Corp., Tokyo, Japan). Spherical equivalent (SER, calculated as sphere+ 0.5*cylinder), prevalence of myopia (SER ≤ -0.50 D), and axial length were compared across 3 years stratified by age.ResultsMyopia prevalence rate was 45.0% (95% CI: 44.6–45.5%) in 2019, 48.7% (95% CI: 48.3–49.1%) in 2020, and 47.5% (95% CI: 47.1–47.9%) in 2021 (p ConclusionsThe COVID-19 lockdown had significant impact on myopia development and axial length, and these impacts remained 1 year after the lockdown. Further longitudinal studies following-up with these students are needed to help understand the long-term effects of COVID-19 lockdown on myopia.</p

    Table_1_Myopia and axial length in school-aged children before, during, and after the COVID-19 lockdown–A population-based study.DOCX

    No full text
    BackgroundMyopic shift had been observed during the COVID-19 lockdown in young school children. It remains unknown whether myopic shift is accompanied with increase in axial length. We aimed to evaluate the impact of the COVID-19 lockdown on myopia and axial length of school children in China by comparing them before, during and after the lockdown.MethodsIn this population-based cross-sectional study, school-based myopia screenings were conducted in the Fall of 2019, 2020, and 2021 (representing before, during and after COVID-19 lockdown respectively) in Chengdu, China. Myopia screenings were performed on 83,132 students aged 6 to 12 years. Non-cycloplegic refractive error was examined using NIDEK auto-refractor (ARK-510A; NIDEK Corp., Tokyo, Japan) and axial length was measured using AL-Scan (NIDEK Corp., Tokyo, Japan). Spherical equivalent (SER, calculated as sphere+ 0.5*cylinder), prevalence of myopia (SER ≤ -0.50 D), and axial length were compared across 3 years stratified by age.ResultsMyopia prevalence rate was 45.0% (95% CI: 44.6–45.5%) in 2019, 48.7% (95% CI: 48.3–49.1%) in 2020, and 47.5% (95% CI: 47.1–47.9%) in 2021 (p ConclusionsThe COVID-19 lockdown had significant impact on myopia development and axial length, and these impacts remained 1 year after the lockdown. Further longitudinal studies following-up with these students are needed to help understand the long-term effects of COVID-19 lockdown on myopia.</p
    corecore