28 research outputs found

    The Slowly Formed Guiselin Brush

    Full text link
    We study polymer layers formed by irreversible adsorption from a polymer melt. Our theory describes an experiment which is a ``slow'' version of that proposed by Guiselin [Europhys. Lett., v. 17 (1992) p. 225] who considered instantaneously irreversibly adsorbing chains and predicted a universal density profile of the layer after swelling with solvent to produce the ``Guiselin brush.'' Here we ask what happens when adsorption is not instantaneous. The classic example is chemisorption. In this case the brush is formed slowly and the final structure depends on the experiment's duration, tfinalt_{final}. We find the swollen layer consists of an inner region of thickness z∗∼tfinal−5/3z^* \sim t_{final}^{-5/3} with approximately constant density and an outer region extending up to height h∼N5/6h \sim N^{5/6} which has the same density decay ∼z−2/5\sim z^{-2/5} as for the Guiselin case.Comment: 7 pages, submitted to Europhysics Letter

    Estimation of the Potential Detection of Diatom Assemblages Based on Ocean Color Radiance Anomalies in the North Sea

    Get PDF
    Over the past years, a large number of new approaches in the domain of ocean-color have been developed, leading to a variety of innovative descriptors for phytoplankton communities. One of these methods, named PHYSAT, currently allows for the qualitative detection of five main phytoplankton groups from ocean-color measurements. Even though PHYSAT products are widely used in various applications and projects, the approach is limited by the fact it identifies only dominant phytoplankton groups. This current limitation is due to the use of biomarker pigment ratios for establishing empirical relationships between in-situ information and specific ocean-color radiance anomalies in open ocean waters. However, theoretical explanations of PHYSAT suggests that it could be possible to detect more than dominance cases but move more toward phytoplanktonic assemblage detection. Thus, to evaluate the potential of PHYSAT for the detection of phytoplankton assemblages, we took advantage of the Continuous Plankton Recorder (CPR) survey, collected in both the English Channel and the North Sea. The available CPR dataset contains information on diatom abundance in two large areas of the North Sea for the period 1998-2010. Using this unique dataset, recurrent diatom assemblages were retrieved based on classification of CPR samples. Six diatom assemblages were identified in-situ, each having indicators taxa or species. Once this first step was completed, the in-situ analysis was used to empirically associate the diatom assemblages with specific PHYSAT spectral anomalies. This step was facilitated by the use of previous classifications of regional radiance anomalies in terms of shape and amplitude, coupled with phenological tools. Through a matchup exercise, three CPR assemblages were associated with specific radiance anomalies. The maps of detection of these specific radiances anomalies are in close agreement with current in-situ ecological knowledge

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    Non-Equilibrium in Adsorbed Polymer Layers

    Full text link
    High molecular weight polymer solutions have a powerful tendency to deposit adsorbed layers when exposed to even mildly attractive surfaces. The equilibrium properties of these dense interfacial layers have been extensively studied theoretically. A large body of experimental evidence, however, indicates that non-equilibrium effects are dominant whenever monomer-surface sticking energies are somewhat larger than kT, a common case. Polymer relaxation kinetics within the layer are then severely retarded, leading to non-equilibrium layers whose structure and dynamics depend on adsorption kinetics and layer ageing. Here we review experimental and theoretical work exploring these non-equilibrium effects, with emphasis on recent developments. The discussion addresses the structure and dynamics in non-equilibrium polymer layers adsorbed from dilute polymer solutions and from polymer melts and more concentrated solutions. Two distinct classes of behaviour arise, depending on whether physisorption or chemisorption is involved. A given adsorbed chain belonging to the layer has a certain fraction of its monomers bound to the surface, f, and the remainder belonging to loops making bulk excursions. A natural classification scheme for layers adsorbed from solution is the distribution of single chain f values, P(f), which may hold the key to quantifying the degree of irreversibility in adsorbed polymer layers. Here we calculate P(f) for equilibrium layers; we find its form is very different to the theoretical P(f) for non-equilibrium layers which are predicted to have infinitely many statistical classes of chain. Experimental measurements of P(f) are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte

    Long-term hydrological and phytoplankton monitoring (1992-2007) of three potentially eutrophicated systems in the eastern English Channel and the southern bight of the North Sea. ICES

    No full text
    International audienceThe spatial and main temporal variations in nutrient concentrations and phytoplankton abundance were investigated between 1992 and 2007 in the eastern English Channel and the Southern Bight of the North Sea, zones of consistent presence of Phaeocystis globosa and diatom blooms. Silicate and phosphate were the main nutrients potentially limiting phytoplankton growth, but the dynamics of the limitation seemingly differ between sites. Phosphate concentration showed a clear monotonic decreasing trend, whereas dissolved inorganic nitrogen and silicate trends were more complex. Nitrate was rarely or never a limiting factor. Results highlight three main periods with a Phaeocystis- or diatom-dominated system in the 1990s, and a more complex pattern in the 2000s. The composition of the phytoplanktonic community is described and an attempt made to establish a link between the community and its environment in terms of variability, shifts, and trends. The effects of larger- vs. regional-scale controlling factors are also discusse

    Hyperspectral and multispectral ocean color inversions to detect <i>Phaeocystis globosa</i> blooms in coastal waters

    No full text
    Identification of phytoplankton groups from space is essential to map and monitor algal blooms in coastal waters, but remains a challenge due to the presence of suspended sediments and dissolved organic matter which interfere with phytoplankton signal. On the basis of field measurements of remote sensing reflectance (Rrs(lambda)), bio-optical parameters, and phytoplankton cells enumerations, we assess the feasibility of using multispectral and hyperspectral approaches for detecting spring blooms of Phaeocystis globosa (P. globosa). The two reflectance ratios (Rrs(490)/Rrs(510) and Rrs(442.5)/Rrs(490)), used in the multispectral inversion, suggest that detection of P. globosa blooms are possible from current ocean color sensors. The effects of chlorophyll concentration, colored dissolved organic matter (CDOM), and particulate matter composition on the performance of this multispectral approach are investigated via sensitivity analysis. This analysis indicates that the development of a remote sensing algorithm, based on the values of these two ratios, should include information about CDOM concentration. The hyperspectral inversion is based on the analysis of the second derivative of Rrs(lambda) (d lambda2 Rrs). Two criteria, based on the position of the maxima and minima of dlambda2 Rrs, are established to discriminate the P. globosa blooms from diatoms blooms. We show that the position of these extremes is related to the specific absorption spectrum of P. globosa and is significantly correlated with the relative biomass of P. globosa. This result confirms the advantage of a hyperspectral over multispectral inversion for species identification and enumeration from satellite observations of ocean color
    corecore