18 research outputs found

    Effects of short-term grazing prohibition on soil physical and chemical properties of meadows in Southwest China

    Get PDF
    Background Grassland plays an important role in the ecosystem, but overgrazing harms the grassland system in many places. Grazing prohibition is an effective method to restore grassland ecosystems, and it plays a great role in realizing the sustainable development of grassland systems. Therefore, it is necessary to carry out research on the influence of regional grazing prohibition on the physical and chemical properties of different grassland systems. Methods In Potatso National Park, Southwest China, we selected experimental plots in the artificial grazing meadow area to study the effects of grazing prohibition on plant and soil indexes in subalpine meadows and swamp meadows. We investigated the biomass and species diversity of grazing prohibition treatment and grazing treatment plots and sampled and tested the soil index. The variation percentage was used to remove the original heterogeneity and yearly variation, allowing us to compare differences in plant index and soil index values between grazing prohibition and grazing treatments. Results Grazing prohibition increased the aboveground biomass, total biomass, total meadow coverage, average height, richness index, Shannon diversity index and evenness index and reduced the belowground biomass and root/shoot ratio in the subalpine meadow and swamp meadow. Additionally, grazing prohibition reduced the pH and soil bulk density and increased the soil total carbon, soil organic carbon, soil total nitrogen, soil hydrolyzable nitrogen, soil total phosphorus and soil available phosphorus in the subalpine meadow and swamp meadow. Nonmetric multidimensional scaling (NMDS) analysis showed that both plant indexes and soil indexes were significantly different between grazing and grazing prohibition treatments and between meadow types. Short-term grazing prohibition had a great impact on improving the fertility of meadow soil in the study area. We suggest that long-term and extensive research should be carried out to promote the restoration and sustainable development of regional grassland systems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Efficacy and safety of oral compared with intravenous tranexamic acid in reducing blood loss after primary total knee and hip arthroplasty: a meta-analysis

    No full text
    Abstract Background Tranexamic acid (TXA) is an anti-fibrinolytic agent successfully preventing blood loss when using intravenously (IV) in total hip arthroplasty (THA) and total knee arthroplasty (TKA). An oral administration, which is available on blood sparing, has been reported exhibit profound cost-saving benefits. The aim of this meta-analysis is to investigate whether the administration of oral and intravenous tranexamic acid postoperatively has equivalent blood-sparing properties in these patients. Methods The online electronic databases were searched for eligible literatures updated on September 2018. Studies assessing the effect between oral TXA and intravenous TXA (IV-TXA) in those undergoing TKA or THA were included. All the data were pooled with the corresponding 95% confidence interval (CI) using RevMan software. Based on the heterogeneity, we performed a systematic analysis to explore the overall results across the included studies. Results Nine studies met our inclusion criteria. No significant differences were identified with regard to the Hb drop (SMD = − 0.03,95%CI = − 0.18–0.12, P = 0.67), total Hb loss (SMD = 0.10,95%CI = − 0.06–0.26, P = 0.24), total blood loss (SMD = − 0.00,95%CI = − 0.20–0.20, P = 1.00), transfusion rate (OR = 0.77,95%CI = 0.54–1.10, P = 0.14), DVT rate (OR = 0.58,95%CI = 0.19–1.75, P = 0.33), and length of hospital stay (SMD = − 0.05,95%CI = − 0.28–0.17, P = 0.63) between the oral groups and intravenous group. Conclusion The blood-sparing efficacy of oral TXA is similar to that of the intravenous forms in the setting of THA and TKA. Considering the cost-benefit superiority and ease of administration of oral TXA, further studies and clinical trials are required to further identify the optimal administration for THA and TKA

    A Highly Sensitive SERS and RRS Coupled Di-Mode Method for CO Detection Using Nanogolds as Catalysts and Bifunctional Probes

    No full text
    Carbon monoxide (CO) is a commonly poisonous gas. It is important to detect CO in daily life. Herein, a new and sensitive surface enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) coupled di-mode method was developed for CO, based on gold nano-enzyme catalysis and gold nanoprobes. CO can react with HAuCl4 to generate gold nanoparticles (AuNPs) in pH 5.2 HAc-NaAc buffer. The generated AuNPs exhibited SERS activity at 1620 cm−1 in the presence of Vitoria blue B (VBB) molecular probes, and an RRS peak at 290 nm. Based on the AuNP bifunctional probes, the increased SERS and RRS intensities respond linearly with the concentration of CO in the range of 100–1500 ng/mL and 30–5230 ng/mL, respectively. To improve the sensitivity, the produced AuNPs were used as nano-enzyme catalysts for the new indicator reaction of HAuCl4-ethanol (En) to amplify the signal. The sensitive SERS method was coupled with the accurate RRS method to develop a sensitive and accurate SERS/RRS di-mode method for determination of 3.0–413 ng/mL CO, based on the AuNP-HAuCl4-En nanocatalytic reaction and its product of AuNPs as SERS and RRS bifunctional probes

    Activation of Interleukin-32 Pro-Inflammatory Pathway in Response to Influenza A Virus Infection

    Get PDF
    Background: Interleukin (IL)-32 is a recently described pro-inflammatory cytokine that has been reported to be induced by bacteria treatment in culture cells. Little is known about IL-32 production by exogenous pathogens infection in human individuals. Methods and Findings: In this study, we found that IL-32 level was increased by 58.2 % in the serum samples from a cohort of 108 patients infected by influenza A virus comparing to that of 115 healthy individuals. Another pro-inflammatory factor cyclooxygenase (COX)-2-associated prostaglandin E2 was also upregulated by 2.7-fold. Expression of IL-32 in influenza A virus infected A549 human lung epithelial cells was blocked by either selective COX-2 inhibitor NS398 or Aspirin, a known anti-inflammatory drug, indicating IL-32 was induced through COX-2 in the inflammatory cascade. Interestingly, we found that COX-2-associate PGE2 production activated by influenza virus infection was significantly suppressed by over-expressio

    Borna Disease Virus P Protein Affects Neural Transmission through Interactions with Gamma-Aminobutyric Acid Receptor-Associated Proteinâ–¿

    No full text
    Borna disease virus (BDV) is one of the infectious agents that causes diseases of the central nervous system in a wide range of vertebrate species and, perhaps, in humans. The phosphoprotein (P) of BDV, an essential cofactor of virus RNA-dependent RNA polymerase, is required for virus replication. In this study, we identified the gamma-aminobutyric acid receptor-associated protein (GABARAP) with functions in neurobiology as one of the viral P protein-interacting cellular factors by using an approach of phage display-based protein-protein interaction analysis. Direct binding between GABARAP and P protein was confirmed by coimmunoprecipitation, protein pull-down, and mammalian two-hybrid analyses. GABARAP originally was identified as a linker between the gamma-aminobutyric acid receptor (GABAR) and the microtubule to regulate receptor trafficking and plays important roles in the regulation of the inhibitory neural transmitter gamma-aminobutyric acid (GABA). We showed that GABARAP colocalizes with P protein in the cells infected with BDV or transfected with the P gene, which resulted in shifting the localization of GABARAP from the cytosol to the nucleus. We further demonstrated that P protein blocks the trafficking of GABAR, a principal GABA-gated ion channel that plays important roles in neural transmission, to the surface of cells infected with BDV or transfected with the P gene. We proposed that during BDV infection, P protein binds to GABARAP, shifts the distribution of GABARAP from the cytoplasm to the nucleus, and disrupts the trafficking of GABARs to the cell membranes, which may result in the inhibition of GABA-induced currents and in the enhancement of hyperactivity and anxiety

    Selective COX-2 inhibitor NS398 suppresses IL-32 expression and IL-32-specific siRNA upregulates COX-2 in influenza A virus infected A549 cell.

    No full text
    <p>A549 cells were infected by influenza A virus (1 MOI) and treated with or without 80 µM NS398, 5 mM Aspirin for 48 h as indicated on the horizontal axis. PGE<sub>2</sub> release (A) and IL-32 production (B) in culture supernatants were measured. A549 cells were transfected with siRNA-IL-32 or siRNA-control and infected by influenza A virus (1 MOI) for 48 h. PGE<sub>2</sub> release (C) and IL-32 production (D) in culture supernatants were measured. The data represent mean±s.d. of three separate experiments.</p

    DsRNA induces IL-32 is in COX-2-dependent manner.

    No full text
    <p>Reporter plasmid pIL-32-Luc (A), and pRL-TK were cotransfected along with pcDNA3.1-COX-2 or pcDNA3.1 into A549 cells. Transfected cells by COX-2 plasmids were incubated for 12 h and then maintained for 36 h with different final concentrations of NS398 as indicated, respectively. Luciferase activity was measured. Results are expressed as the mean±s.d. of three independent experiments performed in triplicate and normalized by Renilla activities. A549 cells were transfected with different indicated amounts of pcDNA3.1-COX-2 or pcDNA3.1. RT-PCR for IL-32 and β-actin (internal control) (B) in cell lysates, Elisa for IL-32 (C) in culture supernatants were performed. (D) A549 cells were treated with poly(IC) (50 µg/ml)+IFN-γ (150 U/ml) for 12 h and then different concentration of NS398 was added as indicated for another 36 h. IL-32 and β-actin mRNA level were examined by RT-PCR. (E) A549 cells were stimulated by poly(IC) (50 µg/ml)+IFN-γ (150 U/ml) with or without 80 µM NS398 for 48 h. Time-dependent of IL-32 expression in culture supernatants were measured. The data represent mean±s.d. of three separate experiments.</p
    corecore