672 research outputs found

    The Best Brown Dwarf Yet?: A Companion to the Hyades Eclipsing Binary V471 Tau

    Get PDF
    We have carried out an analysis of about 160 eclipse timings spanning over 30 years of the Hyades eclipsing binary V471 Tauri that shows a long-term quasi-sinusoidal modulation of its observed eclipse arrival times. The O-Cs have been analyzed for the ``light-time'' effect that arises from the gravitational influence of a tertiary companion. The presence of a third body causes the relative distance of the eclipsing pair to the Earth to change as it orbits the barycenter of the triple system. The result of the analysis of the eclipse times yields a light-time semi-amplitude of 137.2+/-12.0 s, an orbital period of P_3 = 30.5+/-1.6 yr and an eccentricity of e_3 = 0.31+/-0.04. The mass of the tertiary component is M_3 sin i_3 = 0.0393+/-0.0038 Mo when a total mass of 1.61+/-0.06 Mo for V471 Tau is adopted. For orbital inclinations i_3 > 35 deg, the mass of the third body would be below the stable hydrogen burning limit of M = 0.07 Mo and it thus would be a brown dwarf. In the next several years (near maximum elongation), it should be feasible to obtain IR images and spectra of V471 Tau C that, when combined with the known mass, age, distance, and [Fe/H], will serve as a benchmark for understanding the physical properties and evolution of brown dwarfs.Comment: 9 pages, 3 figures, accepted for publication in ApJ Letter

    Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations

    Get PDF
    According to coherent reflection theory (CRT), stimulus frequency otoacoustic emissions (SFOAEs) arise from cochlear irregularities coherently reflecting energy from basilar membrane motion within the traveling-wave peak. This reflected energy arrives in the ear canal predominantly with a single delay at each frequency. However, data from humans and animals indicate that (1) SFOAEs can have multiple delay components, (2) low-frequency SFOAE delays are too short to be accounted for by CRT, and (3) “SFOAEs” obtained with a 2nd (“suppressor”) tone ≄2 octaves above the probe tone have been interpreted as arising from the area basal to the region of cochlear amplification. To explore these issues, we collected SFOAEs by the suppression method in guinea pigs and time-frequency analyzed these data, simulated SFOAEs, and published chinchilla SFOAEs. Time-frequency analysis revealed that most frequencies showed only one SFOAE delay component while other frequencies had multiple components including some with short delays. We found no systematic patterns in the occurrence of multiple delay components. Using a cochlear model that had significant basilar membrane motion only in the peak region of the traveling wave, simulated SFOAEs had single and multiple delay components similar to the animal SFOAEs. This result indicates that multiple components (including ones with short delays) can originate from cochlear mechanical irregularities in the SFOAE peak region and are not necessarily indicative of SFOAE sources in regions ≄2 octaves basal of the SFOAE peak region. We conclude that SFOAEs obtained with suppressors close to the probe frequency provide information primarily about the mechanical response in the region that receives amplification, and we attribute the too-short SFOAE delays at low frequencies to distortion-source SFOAEs and coherent reflection from multiple cochlear motions. Our findings suggest that CRT needs revision to include reflections from multiple motions in the cochlear apex.United States. National Institute for Deafness and other Communicative Disorders (RO1 DC000235)United States. National Institute for Deafness and other Communicative Disorders (R01 DC003687)United States. National Institute for Deafness and other Communicative Disorders (T32 DC00038)United States. National Institute for Deafness and other Communicative Disorders (P30 DC005209)National Science Foundation (U.S.) (NSF Graduate Research Fellowship Program

    Searching for Weak or Complex Magnetic Fields in Polarized Spectra of Rigel

    Full text link
    Seventy-eight high-resolution Stokes V, Q and U spectra of the B8Iae supergiant Rigel were obtained with the ESPaDOnS spectropolarimeter at CFHT and its clone NARVAL at TBL in the context of the Magnetism in Massive Stars (MiMeS) Large Program, in order to scrutinize this core-collapse supernova progenitor for evidence of weak and/or complex magnetic fields. In this paper we describe the reduction and analysis of the data, the constraints obtained on any photospheric magnetic field, and the variability of photospheric and wind lines.Comment: IAUS272 - Active OB Stars: Structure, Evolution, Mass Loss and Critical Limit

    The Distance to the Large Magellanic Cloud from the Eclipsing Binary HV2274

    Get PDF
    The distance to the Large Magellanic Cloud (LMC) is crucial for the calibration of the Cosmic Distance Scale. We derive a distance to the LMC based on an analysis of ground-based photometry and HST-based spectroscopy and spectrophotometry of the LMC eclipsing binary system HV2274. Analysis of the optical light curve and HST/GHRS radial velocity curve provides the masses and radii of the binary components. Analysis of the HST/FOS UV/optical spectrophotometry provides the temperatures of the component stars and the interstellar extinction of the system. When combined, these data yield a distance to the binary system. After correcting for the location of HV2274 with respect to the center of the LMC, we find d(LMC) = 45.7 +/- 1.6 kpc or DM(LMC) = 18.30 +/- 0.07 mag. This result, which is immune to the metallicity-induced zero point uncertainties that have plagued other techniques, lends strong support to the ``short'' LMC distance scale as derived from a number of independent methods.Comment: 6 pages, including 2 pages of figures. Newly available optical (B and V) photometry has revealed -- and allowed the elimination of -- a systematic error in the previously reported determination of E(B-V) for HV2274. The new result is E(B-V) = 0.12 mag (as compared to the value of 0.083 reported in the original submission) and produces a DECREASE in the distance modulus of HV2274 by 0.12 mag. ApJ Letters, in pres

    Artificial Intelligence Approach to the Determination of Physical Properties of Eclipsing Binaries. I. The EBAI Project

    Full text link
    Achieving maximum scientific results from the overwhelming volume of astronomical data to be acquired over the next few decades will demand novel, fully automatic methods of data analysis. Artificial intelligence approaches hold great promise in contributing to this goal. Here we apply neural network learning technology to the specific domain of eclipsing binary (EB) stars, of which only some hundreds have been rigorously analyzed, but whose numbers will reach millions in a decade. Well-analyzed EBs are a prime source of astrophysical information whose growth rate is at present limited by the need for human interaction with each EB data-set, principally in determining a starting solution for subsequent rigorous analysis. We describe the artificial neural network (ANN) approach which is able to surmount this human bottleneck and permit EB-based astrophysical information to keep pace with future data rates. The ANN, following training on a sample of 33,235 model light curves, outputs a set of approximate model parameters (T2/T1, (R1+R2)/a, e sin(omega), e cos(omega), and sin i) for each input light curve data-set. The whole sample is processed in just a few seconds on a single 2GHz CPU. The obtained parameters can then be readily passed to sophisticated modeling engines. We also describe a novel method polyfit for pre-processing observational light curves before inputting their data to the ANN and present the results and analysis of testing the approach on synthetic data and on real data including fifty binaries from the Catalog and Atlas of Eclipsing Binaries (CALEB) database and 2580 light curves from OGLE survey data. [abridged]Comment: 52 pages, accepted to Ap

    Magnetic field and wind of Kappa Ceti: towards the planetary habitability of the young Sun when life arose on Earth

    Full text link
    We report magnetic field measurements for Kappa1~Cet, a proxy of the young Sun when life arose on Earth. We carry out an analysis of the magnetic properties determined from spectropolarimetric observations and reconstruct its large-scale surface magnetic field to derive the magnetic environment, stellar winds and particle flux permeating the interplanetary medium around Kappa1~Cet. Our results show a closer magnetosphere and mass-loss rate of Mdot = 9.7 x 10^{-13} Msol/yr, i.e., a factor 50 times larger than the current solar wind mass-loss rate, resulting in a larger interaction via space weather disturbances between the stellar wind and a hypothetical young-Earth analogue, potentially affecting the planet's habitability. Interaction of the wind from the young Sun with the planetary ancient magnetic field may have affected the young Earth and its life conditionsComment: 6 pages, 5 figures, Published at the Astrophysical Journal Letters (ApJL): Manuscript #LET3358

    Communications Biophysics

    Get PDF
    Contains a summary of research publications and reports on four research projects.National Science Foundation (Grant GP-2495)National Institutes of Health (Grant MH-04737-04)National Aeronautics and Space Administration (Grant NsG-496
    • 

    corecore