6,303 research outputs found

    Graphene-based spin-pumping transistor

    Full text link
    We demonstrate with a fully quantum-mechanical approach that graphene can function as gate-controllable transistors for pumped spin currents, i.e., a stream of angular momentum induced by the precession of adjacent magnetizations, which exists in the absence of net charge currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption

    Graphene as a non-magnetic spin-current lens

    Full text link
    In spintronics, the ability to transport magnetic information often depends on the existence of a spin current traveling between two different magnetic objects acting as source and probe. A large fraction of this information never reaches the probe and is lost because the spin current tends to travel omni-directionally. We propose that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure

    Dynamic RKKY interaction between magnetic moments in graphene nanoribbons

    Get PDF
    Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction, but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistor-like devices.Comment: 10 pages, 10 figure

    Carbon nanotube: a low-loss spin-current waveguide

    Full text link
    We demonstrate with a quantum-mechanical approach that carbon nanotubes are excellent spin-current waveguides and are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations. Such an efficient way of transporting magnetic information suggests that nanotubes are promising candidates for memory devices with fast magnetization switchings

    Controle da brusone nas folhas de arroz de terras altas em resposta ao tratamento de sementes e época de plantio.

    Get PDF
    O presente trabalho objetivou estudar a influência da época de plantio e tratamento de sementes em duas cultivares melhoradas de arroz de terras altas e uma linhagem promissora.bitstream/CNPAF/18764/1/pqfoco55.pd

    Caprinocultura e ovinocultura: crescimento promissor x desorganização preocupante.

    Get PDF
    bitstream/item/52348/1/Midia-Caprinocultura-e-ovinocultura.pd

    Influência da época de plantio no controle da brusone em folhas de arroz de terras altas.

    Get PDF
    O presente trabalho objetivou estudar a influencia da época de plantio, da cultivar e do tratamento de sementes sobre a severidade da brusone nas folhas das novas cultivares de terras altas, melhoradas para alta qualidade de grãos.bitstream/item/59066/1/Foco-56.pd
    corecore