371 research outputs found

    Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers

    Full text link
    Recent studies of methanol and ground-state OH masers at very high spectral resolution have shed new light on small-scale maser processes. The nearby source W3(OH), which contains numerous bright masers in several different transitions, provides an excellent laboratory for high spectral resolution techniques. We present a model of W3(OH) based on EVN observations of the rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral resolution. The 6.0 GHz masers are becoming brighter with time and show evidence for tangential proper motions. We confirm the existence of a region of magnetic field oriented toward the observer to the southeast and find another such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz masers trace the inner edge of a counterclockwise rotating torus feature. Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but trace the same material. Velocity gradients of nearby Zeeman components are much more closely correlated than in the ground state, likely due to the smaller spatial separation between Zeeman components. Hydroxyl maser peaks at very long baseline interferometric resolution appear to have structure on scales both smaller than that resolvable as well as on larger scales.Comment: 21 pages using emulateapj.cls including 16 figures and 2 tables, accepted to Ap

    Spatially Resolved Millimeter Interferometry of SMMJ02399-0136: a Very Massive Galaxy at z=2.8

    Get PDF
    We report high-resolution millimeter mapping with the IRAM Plateau de Bure interferometer of rest-frame 335 micron continuum and CO(3-2) line emission from the z=2.8 submillimeter galaxy SMMJ02399-0136. The continuum emission comes from a ~3" diameter structure whose elongation is approximately east-west and whose centroid is coincident within the astrometric errors with the brightest X-ray and rest-UV peak (L1). The line data show that this structure is most likely a rapidly rotating disk. Its rotation velocity of >420 km/s implies a total dynamical mass of >3x10^11 solar masses within an intrinsic radius of 8 kpc, most of which is plausibly in the form of stars and gas. SMMJ02399-0136 is thus a very massive system, whose formation at z~3 is not easy to understand in current CDM hierarchical merger cosmogonies.Comment: 19 pages, 6 figures (5 PS + 1 GIF), accepted by ApJ; added color versions of Figures 1, 5, &

    Molecular Gas in the Lensed Lyman Break Galaxy cB58

    Full text link
    We have used the IRAM Plateau de Bure Interferometer to map CO(3-2) emission from the gravitationally lensed Lyman break galaxy MS1512-cB58. This is the first detection of a molecular emission line in any Lyman break system; its integrated intensity implies a total molecular gas mass of 6.6e9 Msun, while its width implies a dynamical mass of 1.0e10 csc^2i Msun (for a flat Lambda=0.7 cosmology). These estimates are in excellent concordance with nearly all parameters of the system measured at other wavelengths, and yield a consistent picture of past and future star formation with no obvious discrepancies requiring explanation by differential lensing. In particular, we find that the age and remaining lifetime of the current episode of star formation are likely to be similar; the surface densities of star formation and molecular gas mass are related by a Schmidt law; and the fraction of baryonic mass already converted into stars is sufficient to account for the observed enrichment of the interstellar medium to 0.4 Zsun. Barring substantial gas inflow or a major merger, the stars forming in the current episode will have mass and coevality at z=0 similar to those of a spiral bulge. Assuming cB58 is a typical Lyman break galaxy apart from its magnification, its global parameters suggest that the prescriptions for star formation used in some semi-analytic models of galaxy evolution require moderate revision, although the general prediction that gas mass fraction should increase with redshift is validated. [abridged]Comment: 41 pages, 6 figures, accepted by Ap

    Assessment of Damage to Nucleic Acids and Repair Machinery in Salmonella typhimurium Exposed to Chlorine

    Get PDF
    Water disinfection is usually evaluated using mandatory methods based on cell culturability. However, such methods do not consider the potential of cells to recover, which should also be kept as low as possible. In this paper, we hypothesized that a successful disinfection is achieved only when the applied chlorine leads to both intracellular nucleic acid damage and strong alterations of the DNA repair machinery. Monitoring the SOS system responsiveness with a umuC’-‘lacZ reporter fusion, we found that the expression of this important cellular machinery was altered after the beginning of membrane permeabilization but prior to the total decline of both the cell culturability and the nucleic acid integrity as revealed by Sybr-II staining. Rapid measurement of such nucleic acid alterations by fluorochrome-based staining could be used as an alternative method for assessing the effectiveness of disinfection with chlorine

    Sensitive Radio Observations of High Redshift Dusty QSOs

    Get PDF
    We present sensitive radio continuum imaging at 1.4 GHz and 4.9 GHz of seven high redshift QSOs selected for having a 240 GHz continuum detection, which is thought to be thermal dust emission. We detect radio continuum emission from four of the sources: BRI 0952-0115, BR 1202-0725, LBQS 1230+1627B, and BRI 1335-0417. The radio source in BR 1202-0725 is resolved into two components, coincident with the double mm and CO sources. We compare the results at 1.4 GHz and 240 GHz to empirical and semi-analytic spectral models based on star forming galaxies at low redshift. The radio-to-submm spectral energy distribution for BR 1202-0725, LBQS 1230+1627B, and BRI 1335-0417 are consistent with that expected for a massive starburst galaxy, with implied massive star formation rates of order 1000 solar masses per year (without correcting for possible amplification by gravitational lensing). The radio-to-submm spectral energy distribution for BRI 0952-0115 suggests a low-luminosity radio jet source driven by the AGN.Comment: 12 pages, Latex emulateapj format, including 1 table and 3 figures. The Astrophysical Journal, to appear in the January 2000 issu

    Dynamical Masses of Low Mass Stars in the Taurus and Ophiuchus Star Forming Regions

    Full text link
    We report new dynamical masses for 5 pre-main sequence (PMS) stars in the L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are absolute measurements of the stars' masses and are independent of their effective temperatures and luminosities. Seven of the stars have masses <0.6<0.6 solar masses, thus providing data in a mass range with little data, and of these, 6 are measured to precision <5%< 5 \%. We find 8 stars with masses in the range 0.09 to 1.1 solar mass that agree well with the current generation of PMS evolutionary models. The ages of the stars we measured in the Taurus SFR are in the range 1-3 MY, and <1<1 MY for those in L1688. We also measured the dynamical masses of 14 stars in the ALMA archival data for Akeson~\&~Jensen's Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of the targets are so large that they cannot be reconciled with reported values of their luminosity and effective temperature. We suggest that these targets are themselves binaries or triples.Comment: 20 page

    A Census of the Young Cluster IC 348

    Full text link
    We present a new census of the stellar and substellar members of the young cluster IC 348. We have obtained images at I and Z for a 42'x28' field encompassing the cluster and have combined these measurements with previous optical and near-infrared photometry. From spectroscopy of candidate cluster members appearing in these data, we have identified 122 new members, 15 of which have spectral types of M6.5-M9, corresponding to masses of 0.08-0.015 M_sun by recent evolutionary models. The latest census for IC 348 now contains a total of 288 members, 23 of which are later than M6 and thus are likely to be brown dwarfs. From an extinction-limited sample of members (A_V<=4) for a 16'x14' field centered on the cluster, we construct an IMF that is unbiased in mass and nearly complete for M/M_sun>=0.03 (<=M8). In logarithmic units where the Salpeter slope is 1.35, the mass function for IC 348 rises from high masses down to a solar mass, rises more slowly down to a maximum at 0.1-0.2 M_sun, and then declines into the substellar regime. In comparison, the similarly-derived IMF for Taurus from Briceno et al. and Luhman et al. rises quickly to a peak near 0.8 M_sun and steadily declines to lower masses. The distinctive shapes of the IMFs in IC 348 and Taurus are reflected in the distributions of spectral types, which peak at M5 and K7, respectively. These data provide compelling, model-independent evidence for a significant variation of the IMF with star-forming conditions.Comment: 47 pages, 14 figures, 3rd para of 4.5.3 has been added, this is final version in press at ApJ, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm

    The Radio-to-Submm Spectral Index as a Redshift Indicator

    Get PDF
    We present models of the 1.4 GHz to 350 GHz spectral index, alpha(350/1.4), for starburst galaxies as a function of redshift. The models include a semi-analytic formulation, based on the well quantified radio-to-far infrared correlation for low redshift star forming galaxies, and an empirical formulation, based on the observed spectrum of the starburst galaxies M82 and Arp 220. We compare the models to the observed values of alpha(350/1.4) for starburst galaxies at low and high redshift. We find reasonable agreement between the models and the observations, and in particular, that an observed spectral index of alpha(350/1.4) > +0.5 indicates that the target source is likely to be at high redshift, z > 1. The evolution of alpha(350/1.4) with redshift is mainly due to the very steep rise in the Raleigh-Jeans portion of the thermal dust spectrum shifting into the 350 GHz band with increasing redshift. We also discuss situations where this relationship could be violated. We then apply our models to examine the putative identifications of submm sources in the Hubble Deep Field, and conclude that the submm sources reported by Hughes et al. are likely to be at high redshifts, z > 1.5.Comment: standard LATEX file plus 1 postscript figure. Added references and revised figure. second figure revision. Final Proof version. to appear in Astrophysical Journal Letter

    Looking for Pure Rotational H_2 Emission from Protoplanetary Disks

    Get PDF
    We report on a limited search for pure-rotational molecular hydrogen emission associated with young, pre-main-sequence stars. We looked for H_2 v=0 J = 3->1 and J = 4->2 emission in the mid-infrared using the Texas Echelon-Cross-Echelle Spectrograph (TEXES) at NASA's 3m Infrared Telescope Facility. The high spectral and spatial resolution of our observations lead to more stringent limits on narrow line emission close to the source than previously achieved. One star, AB Aur, shows a possible (2sigma) H_2 detection, but further observations are required to make a confident statement. Our non-detections suggest that a significant fraction, perhaps all, of previously reported H_2 emission towards these objects could be extended on scales of 5" or more.Comment: 14 pages including 2 figures. Accepted by ApJ Letter

    Early Growth and Efficient Accretion of Massive Black Holes at High Redshift

    Get PDF
    Black-hole masses of the highest redshift quasars (4 <~ z <~ 6) are estimated using a previously presented scaling relationship, derived from reverberation mapping of nearby quasars, and compared to quasars at lower redshift. It is shown that the central black holes in luminous z >~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates and the lack of similarly large black-hole masses in the nearby Universe does not rule out their existence at high-z. However, AGN host galaxies do not typically appear fully formed or evolved at these early epochs. This supports scenarios in which black holes build up mass very fast in a radiatively inefficient (or obscured) phase relative to the stars in their galaxies. Additionally, upper envelopes of black-hole mass of approximately 10^{10} solar masses and bolometric luminosity of ~ 10^{48} erg/s are observed at all redshifts.Comment: 17 pages including 7 figures (5 in color) and 1 table. To appear in ApJ, v600, January 1, 200
    • 

    corecore