4,846 research outputs found

    HIPPARCOS Astrometric Orbit and Evolutionary Status of HR 6046

    Full text link
    The previously known, 6-yr spectroscopic binary HR 6046 has been speculated in the past to contain a compact object as the secondary. A recent study has re-determined the orbit with great accuracy, and shown that the companion is an evolved but otherwise normal star of nearly identical mass as the primary, which is also a giant. The binary motion was detected by the Hipparcos mission but was not properly accounted for in the published astrometric solution. Here we use the Hipparcos intermediate data in combination with the spectroscopic results to revise that solution and establish the orbital inclination angle for the first time, and with it the absolute masses M(A) = 1.38 [-0.03,+0.09] M(Sun) and M(B) = 1.36 [-0.02,+0.07] M(Sun). Aided by other constraints, we investigate the evolutionary status and confirm that the primary star is approaching the tip of the red-giant branch, while the secondary is beginning its first ascent.Comment: To appear in The Astronomical Journal. 8 pages including tables and figures, in emulateapj forma

    The pressure confined wind of the massive and compact superstar cluster M82-A1

    Full text link
    The observed parameters of the young superstar cluster M82-A1 and its associated compact HII region are here shown to indicate a low heating efficiency or immediate loss, through radiative cooling, of a large fraction of the energy inserted by stellar winds and supernovae during the early evolution of the cluster. This implies a bimodal hydrodynamic solution which leads to a reduced mass deposition rate into the ISM, with a much reduced outflow velocity. Furthermore, to match the observed parameters of the HII region associated to M82-A1, the resultant star cluster wind is here shown to ought to be confined by a high pressure interstellar medium. The cluster wind parameters, as well as the location of the reverse shock, its cooling length and the radius of the standing outer HII region are derived analytically. All of these properties are then confirmed with a semi-analytical integration of the flow equations, which provides us also with the run of the hydrodynamic variables as a function of radius. The impact of the results is discussed and extended to other massive and young superstar clusters surrounded by a compact HII region.Comment: 19 pages, 4 figures, accepted for publication in Ap

    Metallicity evolution of AGNs from UV emission-lines based on a new index

    Get PDF
    We analyzed the evolution of the metallicity of the gas with the redshift for a sample of AGNs in a very wide redshift range (0<z<4) using ultraviolet emission-lines from the narrow-line regions (NLRs) and photoionization models. The new index C43=log(CIV+CIII])/HeII is suggested as a metallicity indicator for AGNs. Based on this indicator, we confirmed the no metallicity evolution of NLRs with the redshift pointed out by previous works. We found that metallicity of AGNs shows similar evolution than the one predicted by cosmic semi-analytic models of galaxy formation set within the Cold Dark Matter merging hierarchy (for z < 3). Our results predict a mean metallicity for local objects in agreement with the solar value (12+log(O/H)=8.69). This value is about the same that the maximum oxygen abundance value derived for the central parts of local spiral galaxies. Very low metallicity log(Z/Z_{\odot})~ -0.8 for some objects in the range 1.5 < z <3 is derived.Comment: 25 pages, 10 figures, accepted MNRA

    Phase and Charge reentrant phase transitions in two capacitively coupled Josephson arrays with ultra-small junction

    Full text link
    We have studied the phase diagram of two capacitively coupled Josephson junction arrays with charging energy, EcE_c, and Josephson coupling energy, EJE_J. Our results are obtained using a path integral Quantum Monte Carlo algorithm. The parameter that quantifies the quantum fluctuations in the i-th array is defined by αiEciEJi\alpha_i\equiv \frac{E_{{c}_i}}{E_{J_i}}. Depending on the value of αi\alpha_i, each independent array may be in the semiclassical or in the quantum regime: We find that thermal fluctuations are important when α1.5\alpha \lesssim 1.5 and the quantum fluctuations dominate when 2.0α2.0 \lesssim \alpha . We have extensively studied the interplay between vortex and charge dominated individual array phases. The two arrays are coupled via the capacitance CinterC_{{\rm inter}} at each site of the lattices. We find a {\it reentrant transition} in Υ(T,α)\Upsilon(T,\alpha), at low temperatures, when one of the arrays is in the semiclassical limit (i.e. α1=0.5\alpha_{1}=0.5 ) and the quantum array has 2.0α22.52.0 \leq\alpha_{2} \leq 2.5, for the values considered for the interlayer capacitance. In addition, when 3.0α2<4.03.0 \leq \alpha_{2} < 4.0, and for all the inter-layer couplings considered above, a {\it novel} reentrant phase transition occurs in the charge degrees of freedom, i.e. there is a reentrant insulating-conducting transition at low temperatures. We obtain the corresponding phase diagrams and found some features that resemble those seen in experiments with 2D JJA.Comment: 25 Latex pages including 8 encapsulated poscript figures. Accepted for publication in Phys. Rev B (Nov. 2004 Issue

    A Nanoscale Parametric Feedback Oscillator

    Get PDF
    We describe and demonstrate a new oscillator topology, the parametric feedback oscillator (PFO). The PFO paradigm is applicable to a wide variety of nanoscale devices and opens the possibility of new classes of oscillators employing innovative frequency-determining elements, such as nanoelectromechanical systems (NEMS), facilitating integration with circuitry and system-size reduction. We show that the PFO topology can also improve nanoscale oscillator performance by circumventing detrimental effects that are otherwise imposed by the strong device nonlinearity in this size regime

    On the Extreme Positive Feedback Star-Forming Mode from Massive and Compact Superstar Clusters

    Full text link
    The force of gravity acting within the volume occupied by young, compact and massive superstar clusters, is here shown to drive in situ all the matter deposited by winds and supernovae into several generations of star formation. These events are promoted by radiative cooling which drains the thermal energy of the ejected gas causing its accumulation to then rapidly exceed the gravitational instability criterion. A detailed account of the integrated ionizing radiation and mechanical luminosity as a function of time is here shown to lead to a new stationary solution. In this, the mass deposition rate M˙\dot M, instead of causing a wind as in the adiabatic solution, turns into a positive feedback star-forming mode equal to the star formation rate. Some of the implications of this extreme positive feedback mode are discussed.Comment: 4 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    TUMORES RAROS EN NIÑOS Y ADOLESCENTES

    Get PDF
    ResumenLos tumores infrecuentes están definidos como cánceres pediátricos con una incidencia anual <2 casos por millón. Aunque son percibidos como raros, constituyen el 15% de todos los cánceres en menores de 20 años y 30% de todos los tumores de pacientes entre 15 y 19 años.Se han desarrollado proyectos cooperativos nacionales e internacionales pediátricos con el fin de mejorar el manejo clínico y la investigación básica en estos tumores. Revisamos los procesos desarrollados y las dificultades que se han enfrentado, como bajas tasas de registro y participación en bancos de tumores y estudios clínicos. Esta experiencia inicial ha permitido desarrollar estrategias alternativas que permitirían implementar una iniciativa similar para América Latina.La experiencia demuestra la factibilidad de cooperación multidisciplinaria a nivel nacional y sugiere que se pueden realizar estudios internacionales, que aumenten nuestro entendimiento de la biología de estos tumores, mejorando los resultados de tratamiento de niños y adolescentes con cánceres infrecuentes.SummaryAlthough perceived as rare, infrequent tumors, defined as childhood solid malignancies with an annual incidence < 2/million and not considered in other clinical trials, account for 15% of all cancers in patients younger than age 20 and for 30% of all tumors in patients ages 15 to 19.National and international cooperative projects on rare paediatric tumours have been developed to improve the clinical management and basic research on these tumors. We reviewed the process developed and the problems it had to face, as low rates of registration, low levels of participation in tumor banking, and clinical trials. This initial experience has allowed to develop alternative strategies that could help to launch a latinamerican initiative.Experience demonstrates the feasibility of a national multidisciplinary cooperation and suggests that international studies can be performed, increasing our knowledge to understand the biology and improving the treatment results of young patients with rare cancers

    On the X-ray Emission from Massive Star Clusters and their Evolving Superbubbles

    Full text link
    The X-ray emission properties from the hot thermalized plasma that results from the collisions of individual stellar winds and supernovae ejecta within rich and compact star clusters are discussed. We propose a simple analytical way of estimating the X-ray emission generated by super star clusters and derive an expression that indicates how this X-ray emission depends on the main cluster parameters. Our model predicts that the X-ray luminosity from the star cluster region is highly dependent on the star cluster wind terminal speed, a quantity related to the temperature of the thermalized ejecta.We have also compared the X-ray luminosity from the SSC plasma with the luminosity of the interstellar bubbles generated from the mechanical interaction of the high velocity star cluster winds with the ISM.We found that the hard (2.0 keV - 8.0 keV) X-ray emission is usually dominated by the hotter SSC plasma whereas the soft (0.3 keV - 2.0 keV) component is dominated by the bubble plasma. This implies that compact and massive star clusters should be detected as point-like hard X-ray sources embedded into extended regions of soft diffuse X-ray emission. We also compared our results with predictions from the population synthesis models that take into consideration binary systems and found that in the case of young,massive and compact super star clusters the X-ray emission from the thermalized star cluster plasma may be comparable or even larger than that expected from the HMXB population.Comment: 24 pages, 8 figures, Accepted for publication in The Astrophysical Journa

    Chemical Compositions of Four Metal-poor Giants

    Full text link
    We present the chemical compositions of four K giants CS 22877-1, CS 22166-16, CS22169-35 and BS 16085 - 0050 that have [Fe/H] in the range -2.4 to -3.1. Metal-poor stars with [Fe/H] < -2.5 are known to exhibit considerable star - to - star variations of many elements. This quartet confirms this conclusion. CS 22877-1 and CS 22166-16 are carbon-rich. There is significant spread for [α\alpha/Fe] within our sample where [α\alpha/Fe] is computed from the mean of the [Mg/Fe], and [Ca/Fe] ratios. BS 16085 - 0050 is remarkably α\alpha enriched with a mean [α\alpha/Fe] of ++0.7 but CS 22169-35 is α\alpha-poor. The aluminium abundance also shows a significant variation over the sample. A parallel and unsuccessful search among high-velocity late-type stars for metal-poor stars is described.Comment: 14 pages (text), 4 tables, 3 figures, Accepted for publication in PAS

    Five New Transits of the Super-Neptune HD 149026

    Get PDF
    We present new photometry of HD 149026 spanning five transits of its "super-Neptune" planet. In combination with previous data, we improve upon the determination of the planet-to-star radius ratio: R_p/R_star = 0.0491^{+0.0018}_{-0.0005}. We find the planetary radius to be 0.71 +/- 0.05 R_Jup, in accordance with previous theoretical models invoking a high metal abundance for the planet. The limiting error is the uncertainty in the stellar radius. Although we find agreement among four different ways of estimating the stellar radius, the uncertainty remains at 7%. We also present a refined transit ephemeris and a constraint on the orbital eccentricity and argument of pericenter, e cos(omega) = -0.0014 +/- 0.0012, based on the measured interval between primary and secondary transits.Comment: To appear in ApJ [19 pages
    corecore