18 research outputs found
Dianas quirúrgicas en el tratamiento de enfermedades psiquiátricas. Desde el movimiento a las emociones
Deep brain stimulation (DBS) for psychiatric
disorders refractory to conventional treatments are
currently been performed based in the knowledgment
obtained in the motor disorder surgery and mainly in
Parkinson´s disease. Depression, obsessive-compulsive
disorder (OCD) and Tourette syndrome, all of them are
cortico-striato-thalamo-cortical pathological process
involved in the limbic loop of the basal ganglia.
This review describes the different targets in these
pathological neuro-psychiatric disorders. For OCD
there are currently two targets, ventral striatum (VS)
Accumbens nucleus (Nacc) and the subthalamic nucleus
(STN). In refractory depression the subgenual area (25
Brodmann area) and VS/Nacc. For Tourette syndrome
the ventralis oralis internus and centromedianum/
parafascicularis of the thalamus (Voi and CM/Pf) and
the internal part of the globus pallidus (GPi). Currently
there are no specific surgical target for each pathological
disorder because clinical results reported are
very similar after stimulation surgery. In other point,
a selected surgical target also may improve different
pathologies
Factors associated with a higher rate of distant failure after primary treatment for glioblastoma
Our purpose was to analyze the pattern of failure in glioblastoma (GBM) patients at first recurrence after radiotherapy and temozolomide and its relationship with different factors. From 77 consecutive GBM patients treated at our institution with fluorescence guided surgery and standard radiochemotherapy, 58 first recurrences were identified and included in a retrospective review. Clinical data including age, Karnofsky performance score, preoperative tumor volume and location, extend of resection, MGMT promoter methylation status, time to progression (PFS), overall survival (OS) and adjuvant therapies were reviewed for every patient. Recurrent tumor location respect the original lesion was the end point of the study. The recurrence pattern was local only in 65.5% of patients and non-local in 34.5%. The univariate and multivariate analysis showed that greater preoperative tumor volume in T1 gadolinium enhanced sequences, was the only variable with statistical signification (p < 0.001) for increased rate of non-local recurrences, although patients with MGMT methylation and complete resection of enhancing tumor presented non-local recurrences more frequently. PFS was longer in patients with non-local recurrences (13.8 vs. 6.4 months; p = 0.019, log-rank). However, OS was not significantly different in both groups (24.0 non-local vs. 19.3 local; p = 0.9). Rate of non-local recurrences in our series of patients treated with fluorescence guided surgery and standard radiochemotherapy was higher than previously published in GBM, especially in patients with longer PFS. Greater preoperative enhancing tumor volume was associated with increased rate of non-local recurrences
The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models
Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032)
All‐Dry Deterministic Transfer of Thin Gold Nanowires for Electrical Connectivity
Abstract Metallic nanowires (NWs) exhibit a number of interesting properties, such as high conductivity, flexibility, and cold‐weldability, making them ideal for nanocircuits. They are usually adsorbed on substrates by depositing a colloidal solution of NWs on the surface. However, they remain randomly scattered and solvent residues may contaminate/ degrade the sample. This study presents a method for forming electrical contacts with gold nanowires based on all‐dry deterministic transfer. The process begins with the adsorption of gold nanowires by drop casting the colloidal solution onto a viscoelastic substrate. These wires are transferred to selected locations on the substrate, minimizing manipulation with fabrication times a factor of 2 shorter than direct drop casting deposition, preserving surface and sample conditions, and improving the fabrication of nanocircuits. Atomic force microscopy is used to manipulate the NWs for the final connections, which have contact resistances of a few ohms. To illustrate the technique, three different examples of applicability are presented. This work is expected to be a starting point for expanding the potential of deterministic transfer that is successfully used in 2D materials. For example, to study local electrical transport in heterogeneous samples such as van der Waals heterostructures and twisted layers of 2D materials
Factors associated with a higher rate of distant failure after primary treatment for glioblastoma
Our purpose was to analyze the pattern of failure in glioblastoma (GBM) patients at first recurrence after radiotherapy and temozolomide and its relationship with different factors. From 77 consecutive GBM patients treated at our institution with fluorescence guided surgery and standard radiochemotherapy, 58 first recurrences were identified and included in a retrospective review. Clinical data including age, Karnofsky performance score, preoperative tumor volume and location, extend of resection, MGMT promoter methylation status, time to progression (PFS), overall survival (OS) and adjuvant therapies were reviewed for every patient. Recurrent tumor location respect the original lesion was the end point of the study. The recurrence pattern was local only in 65.5% of patients and non-local in 34.5%. The univariate and multivariate analysis showed that greater preoperative tumor volume in T1 gadolinium enhanced sequences, was the only variable with statistical signification (p < 0.001) for increased rate of non-local recurrences, although patients with MGMT methylation and complete resection of enhancing tumor presented non-local recurrences more frequently. PFS was longer in patients with non-local recurrences (13.8 vs. 6.4 months; p = 0.019, log-rank). However, OS was not significantly different in both groups (24.0 non-local vs. 19.3 local; p = 0.9). Rate of non-local recurrences in our series of patients treated with fluorescence guided surgery and standard radiochemotherapy was higher than previously published in GBM, especially in patients with longer PFS. Greater preoperative enhancing tumor volume was associated with increased rate of non-local recurrences
Recommended from our members
Twelve-Month Clinical and Histopathological Performance of a Novel Synthetic Cornea Device in Rabbit Model
PurposeTo report the biological stability and postoperative outcomes of a second-generation, single-piece, flexible synthetic cornea in a rabbit model. MethodsDevice materials and design were amended to enhance biointegration. Optic skirt design devices were made from compact perfluoroalkoxy alkane with porous expanded polytetrafluoroethylene ingrowth surface overlying the skirt and optic wall. Sixteen devices were implanted into intrastromal pocket in rabbit eyes. Rabbits were randomly assigned to 6- and 12-month follow-up cohorts (n = 8 in each) postoperatively. Monthly examinations and optical coherence tomography assessed cornea-device integration, iridocorneal angle, optic nerve, and retina. ResultsThere were no intraoperative complications. All devices were in situ at exit, with clear optics. No retroprosthetic membrane, glaucoma, cataract formation, or retinal detachment was observed. Two rabbits in the 6-month group had mild, focal anterior lamella thinning without retraction adjacent to the optic near tight sutures. Three postoperative complications occurred in the 12-month group. One rabbit diagnosed with endophthalmitis was euthanized on day 228. Mild sterile focal retraction of anterior lamella occurred in two rabbits, which were terminated on days 225 and 315. Light microscopic examination of enucleated globes demonstrated fibroplasia with new collagen deposition into the porous scaffold without significant inflammation, encapsulation, or granuloma formation. ConclusionsClinical evaluations, imaging, and histopathological findings indicate favorable outcomes of this synthetic corneal device in a rabbit model. Early feasibility studies in humans are being planned. Translational RelevanceFavorable 12-month results of the device in rabbits demonstrate vision-restoring potential in corneally blind individuals at high risk of failure with donor keratoplasty
Recommended from our members
Design and Biocompatibility of a Novel, Flexible Artificial Cornea
We sought to introduce the materials, design, and biocompatibility of a flexible and suturable artificial corneal device.
Single-piece, fully synthetic, optic-skirt design devices were made from compact perfluoroalkoxy alkane. The skirt and the optic wall surfaces were lined with a porous tissue ingrowth material using expanded polytetrafluoroethylene. Full-thickness macroapertures around the skirt perimeter were placed to facilitate nutrition of the recipient cornea. Material properties including the skirt's modulus of elasticity and bending stiffness, optic light transmission, wetting behavior, topical drug penetrance, and degradation profile were evaluated.
The final prototype suitable for human use has a transparent optic with a diameter of 4.60 mm anteriorly, 4.28 mm posteriorly, and a skirt outer diameter of 6.8 mm. The biomechanical and optical properties of the device closely align with the native human cornea with an average normalized device skirt-bending stiffness of 4.7 kPa·mm4 and light transmission in the visible spectrum ranging between 92% and 96%. No optical damage was seen in the 36 devices tested in fouling experiments. No significant difference was observed in topical drug penetrance into the anterior chamber of the device implanted eye compared with the naïve rabbit eye.
The flexibility and biocompatibility of our artificial cornea device may offer enhanced tissue integration and decreased inflammation, leading to improved retention compared with rigid keratoprosthesis designs.
We have developed a fully synthetic, flexible, suturable, optic-skirt design prototype artificial cornea that is ready to be tested in early human feasibility studies