5 research outputs found
Ring-core few-mode fiber for tunable true time delay line operation
© 2019 Optical Society of America. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.[EN] We propose, for the first time to our knowledge, tunable true time delay line operation for radiofrequency signals on a few-mode fiber link. In particular, the custom design of a 7-LP-mode ring-core few-mode fiber together with a set of 5 broadband long period gratings inscribed at the proper positions along the fiber allows 4-sample true time delay line tunability over a 20-nm optical wavelength range. We study the performance of the designed true time delay line in the context of reconfigurable microwave photonics signal processing by theoretically evaluating microwave signal filtering and optical beamforming networks for phased array antennas.European Research Council (Consolidator Grant 724663); Ministerio de Economia, Industria y Competitividad, Gobierno de Espana (BES-2015-073359 for S. Garcia, RYC-2014-16247 for I. Gasulla, TEC2016-80150-R).García-Cortijo, S.; Guillem-Cogollos, R.; Gasulla Mestre, I. (2019). Ring-core few-mode fiber for tunable true time delay line operation. Optics Express. 27(22):31773-31782. https://doi.org/10.1364/OE.27.03177331773317822722Richardson, D. J., Fini, J. M., & Nelson, L. E. (2013). Space-division multiplexing in optical fibres. Nature Photonics, 7(5), 354-362. doi:10.1038/nphoton.2013.94Barrera, D., Gasulla, I., & Sales, S. (2015). Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber. Journal of Lightwave Technology, 33(12), 2445-2450. doi:10.1109/jlt.2014.2366556Gasulla, I., & Capmany, J. (2012). Microwave Photonics Applications of Multicore Fibers. IEEE Photonics Journal, 4(3), 877-888. doi:10.1109/jphot.2012.2199101Capmany, J., Ortega, B., Pastor, D., & Sales, S. (2005). Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology, 23(2), 702-723. doi:10.1109/jlt.2004.838819Ng, W., Walston, A. A., Tangonan, G. L., Lee, J. J., Newberg, I. L., & Bernstein, N. (1991). The first demonstration of an optically steered microwave phased array antenna using true-time-delay. Journal of Lightwave Technology, 9(9), 1124-1131. doi:10.1109/50.85809Wang, C., & Yao, J. (2013). Fiber Bragg gratings for microwave photonics subsystems. Optics Express, 21(19), 22868. doi:10.1364/oe.21.022868Morton, P. A., & Khurgin, J. B. (2009). Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier. IEEE Photonics Technology Letters, 21(22), 1686-1688. doi:10.1109/lpt.2009.2031500Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., & Sales, S. (2013). Microwave Photonic Signal Processing. Journal of Lightwave Technology, 31(4), 571-586. doi:10.1109/jlt.2012.2222348Gasulla, I., Barrera, D., Hervás, J., & Sales, S. (2017). Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers. Scientific Reports, 7(1). doi:10.1038/srep41727García, S., & Gasulla, I. (2016). Dispersion-engineered multicore fibers for distributed radiofrequency signal processing. Optics Express, 24(18), 20641. doi:10.1364/oe.24.020641Guillem, R., García, S., Madrigal, J., Barrera, D., & Gasulla, I. (2018). Few-mode fiber true time delay lines for distributed radiofrequency signal processing. Optics Express, 26(20), 25761. doi:10.1364/oe.26.025761García, S., Guillem, R., Madrigal, J., Barrera, D., Sales, S., & Gasulla, I. (2019). Sampled true time delay line operation by inscription of long period gratings in few-mode fibers. Optics Express, 27(16), 22787. doi:10.1364/oe.27.022787Zhao, Y., Liu, Y., Zhang, L., Zhang, C., Wen, J., & Wang, T. (2016). Mode converter based on the long-period fiber gratings written in the two-mode fiber. Optics Express, 24(6), 6186. doi:10.1364/oe.24.006186Marcuse, D. (1972). Derivation of Coupled Power Equations. Bell System Technical Journal, 51(1), 229-237. doi:10.1002/j.1538-7305.1972.tb01911.xOgawa, K. (1977). Simplified Theory of the Multimode Fiber Coupler. Bell System Technical Journal, 56(5), 729-745. doi:10.1002/j.1538-7305.1977.tb00536.xErdogan, T. (1997). Cladding-mode resonances in short- and long-period fiber grating filters. Journal of the Optical Society of America A, 14(8), 1760. doi:10.1364/josaa.14.001760Capmany, J., Ortega, B., & Pastor, D. (2006). A tutorial on microwave photonic filters. Journal of Lightwave Technology, 24(1), 201-229. doi:10.1109/jlt.2005.860478Ortega, B., Cruz, J. L., Capmany, J., Andres, M. V., & Pastor, D. (2000). Variable delay line for phased-array antenna based on a chirped fiber grating. IEEE Transactions on Microwave Theory and Techniques, 48(8), 1352-1360. doi:10.1109/22.85948
Space-Division Multiplexing fibers for radiofrequency signal processing
[EN] Beyond high-capacity transmission, space-division
multiplexing fibers can be engineered to provide distributed signal
processing for microwave signals. We present an overview of
different fiber technologies where the incorporation of the space
dimension brings advantages in terms of compactness as well as
operation flexibility and versatility.García-Cortijo, S.; Guillem-Cogollos, R.; Ureña-Gisbert, M.; Gasulla Mestre, I. (2020). Space-Division Multiplexing fibers for radiofrequency signal processing. IEEE. 1-2. https://doi.org/10.1109/SUM48678.2020.91610441
Few-mode fibre delay lines with inscribed long period gratings for radiofrequency signal processing
[EN] We propose and experimentally demonstrate distributed radiofrequency signal on a few-mode-fibre device. The inscription of
long period gratings at specific locations along the fibre allows the excitation of the higher-order modes while adjusting the
modal group delays required for sample true time delay line operation.This research was supported by the ERC Consolidator Grant
724663, Universitat Politècnica de València PAID-01-18
scholarship for J. Madrigal and the Spanish MINECO through:
TEC2016-80150-R Project, BES-2015-073359 scholarship for
S. García, IJCI-2017-32476 fellowship for D. Barrera and
RYC-2014-16247 fellowship for I. Gasulla. We thank
Prysmian for providing the FMF and Cailabs for providing the
mode multiplexers.García-Cortijo, S.; Guillem-Cogollos, R.; Madrigal-Madrigal, J.; Barrera Vilar, D.; Sales Maicas, S.; Gasulla Mestre, I. (2019). Few-mode fibre delay lines with inscribed long period gratings for radiofrequency signal processing. IEEE. 1-4. https://doi.org/10.1049/cp.2019.0781S1
Sampled true time delay line operation by inscription of long period gratings in few-mode fibers
© 2019 Optical Society of America. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.[EN] We propose and experimentally demonstrate distributed microwave photonics signal processing over a few-mode fiber link by implementing 4-sample true time delay line operation. The inscription of a set of long period gratings at specific locations along the few-mode fiber allows the excitation of the higher-order modes while adjusting the individual sample group delays and amplitudes that are required for sampled true time delay line behavior. Since solely the injection of the fundamental mode at the few-mode fiber input is required, we render this signal processing system independent of any preceding fiber link that may be required in addition to distribute the signal. We experimentally validate the performance of the implemented true time delay line when applied to radiofrequency signal filtering.European Research Council (ERC) (Consolidator Grant 724663); Spanish MINECO (TEC2014-60378-C2-1-R and TEC2016-80150-R projects, BES-2015-073359 scholarship for S. Garcia, IJCI-2017-32476 fellowship for D. Barrera, Ramon y Cajal fellowship RYC-2014-16247 for I. Gasulla); Universitat Politecnica de Valencia (PAID-01-18 scholarship for J. Madrigal).García-Cortijo, S.; Guillem-Cogollos, R.; Madrigal-Madrigal, J.; Barrera, D.; Sales Maicas, S.; Gasulla Mestre, I. (2019). Sampled true time delay line operation by inscription of long period gratings in few-mode fibers. Optics Express. 27(16):22787-22793. https://doi.org/10.1364/OE.27.02278722787227932716Richardson, D. J., Fini, J. M., & Nelson, L. E. (2013). Space-division multiplexing in optical fibres. Nature Photonics, 7(5), 354-362. doi:10.1038/nphoton.2013.94Galve, J. M., Gasulla, I., Sales, S., & Capmany, J. (2016). Reconfigurable Radio Access Networks Using Multicore Fibers. IEEE Journal of Quantum Electronics, 52(1), 1-7. doi:10.1109/jqe.2015.2497244Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., & Sales, S. (2013). Microwave Photonic Signal Processing. Journal of Lightwave Technology, 31(4), 571-586. doi:10.1109/jlt.2012.2222348Gasulla, I., Barrera, D., Hervás, J., & Sales, S. (2017). Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers. Scientific Reports, 7(1). doi:10.1038/srep41727García, S., & Gasulla, I. (2016). Dispersion-engineered multicore fibers for distributed radiofrequency signal processing. Optics Express, 24(18), 20641. doi:10.1364/oe.24.020641Guillem, R., García, S., Madrigal, J., Barrera, D., & Gasulla, I. (2018). Few-mode fiber true time delay lines for distributed radiofrequency signal processing. Optics Express, 26(20), 25761. doi:10.1364/oe.26.025761Bhatia, V., & Vengsarkar, A. M. (1996). Optical fiber long-period grating sensors. Optics Letters, 21(9), 692. doi:10.1364/ol.21.000692Zhao, Y., Liu, Y., Zhang, L., Zhang, C., Wen, J., & Wang, T. (2016). Mode converter based on the long-period fiber gratings written in the two-mode fiber. Optics Express, 24(6), 6186. doi:10.1364/oe.24.006186Bai-Ou Guan, Hwa-Yaw Tam, Siu-Lau Ho, Shun-Yee Liu, & Xiao-Yi Dong. (2000). Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription. IEEE Photonics Technology Letters, 12(6), 642-644. doi:10.1109/68.849070Dorrer, C., Belabas, N., Likforman, J.-P., & Joffre, M. (2000). Spectral resolution and sampling issues in Fourier-transform spectral interferometry. Journal of the Optical Society of America B, 17(10), 1795. doi:10.1364/josab.17.001795Gasulla, I., & Kahn, J. M. (2015). Performance of Direct-Detection Mode-Group-Division Multiplexing Using Fused Fiber Couplers. Journal of Lightwave Technology, 33(9), 1748-1760. doi:10.1109/jlt.2015.2392255Grassi, F., Mora, J., Ortega, B., & Capmany, J. (2009). Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources. Optics Express, 17(6), 4740. doi:10.1364/oe.17.00474
Few-mode fiber true time delay lines for distributed radiofrequency signal processing
[EN] We report, for the first time to our knowledge. distributed radiofrequency signal processing built upon true time delay operation on a step-index few-mode fiber. Two 3-sample configurations with different time delay properties are implemented over the same 60-meter 4-LP-mode fiber link. The inscription of a long period grating at a specific fiber position converts part of the LP01 mode into the LP02, permitting sample time delay engineering. Delay line performance is experimentally demonstrated when applied to radiofrequency signal filtering. example of fiber-distributed processing functionality exhibiting one order or magnitude gain in terms of compactness. (C) 2018 Optical Society of America America under the terms of the OSA Open Access Publishing AgreementH2020 European Research Council (ERC) (Consolidator Grant 724663); Spanish MINECO (TEC2014-60378-C2-1-R and TEC2016-80150-R projects, BES-2015-073359 scholarship for S. Garcia, Ramon y Cajal fellowship RYC-2014-16247 for I. Gasulla).© 2018 Optical Society of America. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibitedGuillem-Cogollos, R.; García-Cortijo, S.; Madrigal-Madrigal, J.; Barrera Vilar, D.; Gasulla Mestre, I. (2018). Few-mode fiber true time delay lines for distributed radiofrequency signal processing. Optics Express. 26(20):25761-25768. https://doi.org/10.1364/OE.26.02576125761257682620Richardson, D. J., Fini, J. M., & Nelson, L. E. (2013). Space-division multiplexing in optical fibres. Nature Photonics, 7(5), 354-362. doi:10.1038/nphoton.2013.94Gasulla, I., & Capmany, J. (2012). Microwave Photonics Applications of Multicore Fibers. IEEE Photonics Journal, 4(3), 877-888. doi:10.1109/jphot.2012.2199101Gasulla, I., Barrera, D., Hervás, J., & Sales, S. (2017). Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers. Scientific Reports, 7(1). doi:10.1038/srep41727García, S., & Gasulla, I. (2016). Dispersion-engineered multicore fibers for distributed radiofrequency signal processing. Optics Express, 24(18), 20641. doi:10.1364/oe.24.020641Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., & Sales, S. (2013). Microwave Photonic Signal Processing. Journal of Lightwave Technology, 31(4), 571-586. doi:10.1109/jlt.2012.2222348Bhatia, V., & Vengsarkar, A. M. (1996). Optical fiber long-period grating sensors. Optics Letters, 21(9), 692. doi:10.1364/ol.21.000692Vengsarkar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Erdogan, T., & Sipe, J. E. (1996). Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 14(1), 58-65. doi:10.1109/50.476137Vengsarkar, A. M., Bergano, N. S., Davidson, C. R., Pedrazzani, J. R., Judkins, J. B., & Lemaire, P. J. (1996). Long-period fiber-grating-based gain equalizers. Optics Letters, 21(5), 336. doi:10.1364/ol.21.000336. L. S. M. (2015). TEMPERATURE AND STRAIN SENSITIVITY OF LONG PERIOD GRATING FIBER SENSOR: REVIEW. International Journal of Research in Engineering and Technology, 04(02), 776-782. doi:10.15623/ijret.2015.0402108Barrera, D., Madrigal, J., & Sales, S. (2018). Long Period Gratings in Multicore Optical Fibers for Directional Curvature Sensor Implementation. Journal of Lightwave Technology, 36(4), 1063-1068. doi:10.1109/jlt.2017.2764951Patrick, H. J., Kersey, A. D., & Bucholtz, F. (1998). Analysis of the response of long period fiber gratings to external index of refraction. Journal of Lightwave Technology, 16(9), 1606-1612. doi:10.1109/50.712243Zhao, Y., Liu, Y., Zhang, L., Zhang, C., Wen, J., & Wang, T. (2016). Mode converter based on the long-period fiber gratings written in the two-mode fiber. Optics Express, 24(6), 6186. doi:10.1364/oe.24.006186Bai-Ou Guan, Hwa-Yaw Tam, Siu-Lau Ho, Shun-Yee Liu, & Xiao-Yi Dong. (2000). Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription. IEEE Photonics Technology Letters, 12(6), 642-644. doi:10.1109/68.849070James, S. W., Tatam, R. P., Twin, A., Bateman, R., & Noonan, P. (2003). Cryogenic temperature response of fibre optic long period gratings. Measurement Science and Technology, 14(8), 1409-1411. doi:10.1088/0957-0233/14/8/329Birks, T. A., Gris-Sánchez, I., Yerolatsitis, S., Leon-Saval, S. G., & Thomson, R. R. (2015). The photonic lantern. Advances in Optics and Photonics, 7(2), 107. doi:10.1364/aop.7.000107Dorrer, C., Belabas, N., Likforman, J.-P., & Joffre, M. (2000). Spectral resolution and sampling issues in Fourier-transform spectral interferometry. Journal of the Optical Society of America B, 17(10), 1795. doi:10.1364/josab.17.001795Gasulla, I., & Kahn, J. M. (2015). Performance of Direct-Detection Mode-Group-Division Multiplexing Using Fused Fiber Couplers. Journal of Lightwave Technology, 33(9), 1748-1760. doi:10.1109/jlt.2015.239225