20 research outputs found

    Multiple mutations in the nicotinic acetylcholine receptor Ccα6 gene associated with resistance to spinosad in medfly

    Get PDF
    Spinosad is an insecticide widely used for the control of insect pest species, including Mediterranean fruit fly, Ceratitis capitata. Its target site is the α6 subunit of the nicotinic acetylcholine receptors, and different mutations in this subunit confer resistance to spinosad in diverse insect species. The insect α6 gene contains 12 exons, with mutually exclusive versions of exons 3 (3a, 3b) and 8 (8a, 8b, 8c). We report here the selection of a medfly strain highly resistant to spinosad, JW-100 s, and we identify three recessive Ccα6 mutant alleles in the JW-100 s population: (i) Ccα63aQ68* containing a point mutation that generates a premature stop codon on exon 3a (3aQ68*); (ii) Ccα63aAG>AT containing a point mutation in the 5' splicing site of exon 3a (3aAG > AT); and (iii) Ccα63aQ68*-K352* that contains the mutation 3aQ68* and another point mutation on exon 10 (K352*). Though our analysis of the susceptibility to spinosad in field populations indicates that resistance has not yet evolved, a better understanding of the mechanism of action of spinosad is essential to implement sustainable management practices to avoid the development of resistance in field populations

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Field detection and predicted evolution of spinosad resistance in Ceratitis capitata

    Get PDF
    BACKGROUND: The sustainable control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is compromised by the development of resistance to malathion and lambda‐cyhalothrin in Spanish field populations. At present, field populations remain susceptible to spinosad. However, the resistant strain JW‐100s has been obtained under laboratory selection with spinosad, and resistance has been associated with the presence of different mutations causing truncated transcripts of the α6 subunit of the nicotinic acetylcholine receptor (nAChRα6). RESULTS: An F1 screen assay followed by the molecular characterization of surviving flies has been used to search for spinosad‐resistant alleles in field populations. Two different resistant alleles giving rise to truncated isoforms of Ccα6 have been identified, which corresponds to an estimated allelic frequency of at least 0.0023–0.0046. The fitness values of the resistant nAChRα6 alleles found in the laboratory strain JW‐100s were estimated to be 0.4 for RR and 0.2 for SR. Mathematical modelling predicted that spinosad‐resistant alleles will rapidly decline over time in field populations if their fitness cost was the same as estimated for laboratory‐resistant alleles. However, they are predicted to increase in the field if their fitness cost is lower and resistance management strategies are not implemented. CONCLUSION: Spinosad‐resistant alleles have been detected in field populations for the first time. Our modelling simulations indicate that the best option to delay the appearance of spinosad resistance would be its rotation with other insecticides without cross‐resistance. The integrated F1 screen/molecular genetic analysis presented here can be used for future monitoring studies

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    Background The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. Results The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. Conclusions The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution

    Erratum: "The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species", [Genome Biol. (2016), 17, (192)]

    No full text
    After publication of our recent article [1] we noticed that Monica Munoz-Torres had been omitted from the author list. We have now added her, and the updated Funding and Authors' contributions sections are below. © The Author(s). 2017

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    No full text
    Background: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. Results: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. Conclusions: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution. © 2016 The Author(s)
    corecore