42 research outputs found

    \u3ci\u3eOestrus ovis\u3c/i\u3e in sheep: relative third-instar populations, risks of infection and parasitic control

    Get PDF
    Oestrus ovis (L.) (Diptera: Oestridae), the nasal bot fly, has a relatively short free-living life cycle outside of the host, and therefore it is necessary to know when the parasitic period occurs in order to prevent the clinical signs and economic losses caused by this parasite. The length of this parasitic portion of the life cycle is quite variable: a few weeks to several months depending on the season and climatic conditions. Surveys of Oestrus ovis larval populations in sheep show different results on the number of generations according to the local climate. Mean monthly larval profiles of L1 and L3 burdens of sheep from West African Sahelian countries, Mediterranean countries (Morocco, Tunisia and Sicily) and Southwest France were compared. Valuable information on the suspected extension of the fly season is obtained showing the period of infection in each area. This knowledge will be a valuable tool to help in choosing the right treatment at the right period

    Oestrus ovis

    Full text link

    The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System

    No full text
    β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents

    Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages.

    No full text
    β-glucans (BG) are abundant polysaccharides of the Saccharomyces cerevisiae cell wall (Sc CW), an industry byproduct. They have immuno-stimulatory properties upon engagement of dectin-1 (Clec7a), their main receptor on particular immune cells, and they actually become of great interest because of their preventive or therapeutic potentials. Zymosan, a crude extract of Sc CW was studied as a prototypic BG, despite its miscellaneous PAMPs content. Here, we examined the response of murine wild type or Clec7a-/- bone marrow-derived macrophages (BMDM) to products with increasing BG content (15, 65 or 75%) and compared their effects with those of other dectin-1 ligands. The enrichment process removed TLR ligands while preserving dectin-1 activity. The most enriched extracts have very low NFκB activity and triggered low amounts of cytokine production in contrast with crude products like zymosan and BG15. Furthermore, MyD88-/- BMDM did not produce TNFα in response to crude Sc CW extracts, whereas their response to BG-enriched extracts was unaffected, suggesting that BG alone are not able to initiate cytokine secretion. Although Sc CW-derived BG stimulated the late and strong expression of Csf2 in a dectin-1-dependent manner, they remain poor inducers of chemokine and cytokine production in murine macrophages

    Molecular Analysis of a Short-term Model of β-Glucans-Trained Immunity Highlights the Accessory Contribution of GM-CSF in Priming Mouse Macrophages Response.

    No full text
    β-Glucans (BGs) are glucose polymers present in the fungal cell wall (CW) and, as such, are recognized by innate immune cells as microbial-associated pattern through Dectin-1 receptor. Recent studies have highlighted the ability of the pathogenic yeast Candida albicans or its CW-derived β(1,3) (1,6)-glucans to increase human monocytes cytokine secretion upon secondary stimulation, a phenomenon now referred as immune training. This ability of monocytes programming confers BGs an undeniable immunotherapeutic potential. Our objective was to determine whether BGs from Saccharomyces cerevisiae, a non-pathogenic yeast, are endowed with such a property. For this purpose, we have developed a short-term training model based on lipopolysaccharide re-stimulation of mouse bone marrow-derived macrophages primed with S. cerevisiae BGs. Through a transcriptome analysis, we demonstrated that BGs induced a specific gene expression signature involving the PI3K/AKT signaling pathway as in human monocytes. Moreover, we showed that over-expression of Csf2 (that encodes for GM-CSF) was a Dectin-1-dependent feature of BG-induced priming of macrophages. Further experiments confirmed that GM-CSF up-regulated Dectin-1 cell surface expression and amplified macrophages response along BG-mediated training. However, the blockade of GM-CSFR demonstrated that GM-CSF was not primarily required for BG-induced training of macrophages although it can substantially improve it. In addition, we found that mouse macrophages trained with BGs upregulated their expression of the four and a half LIM-only protein 2 (Fhl2) in a Dectin-1-dependent manner. Consistently, we observed that intracellular levels of FHL2 increased after stimulation of macrophages with BGs. In conclusion, our experiments provide new insights on GM-CSF contribution to the training of cells from the monocytic lineage and highlights FHL2 as a possible regulator of BG-associated signaling

    Molecular Analysis of a Short-term Model of β-Glucans-Trained Immunity Highlights the Accessory Contribution of GM-CSF in Priming Mouse Macrophages Response.

    No full text
    β-Glucans (BGs) are glucose polymers present in the fungal cell wall (CW) and, as such, are recognized by innate immune cells as microbial-associated pattern through Dectin-1 receptor. Recent studies have highlighted the ability of the pathogenic yeast Candida albicans or its CW-derived β(1,3) (1,6)-glucans to increase human monocytes cytokine secretion upon secondary stimulation, a phenomenon now referred as immune training. This ability of monocytes programming confers BGs an undeniable immunotherapeutic potential. Our objective was to determine whether BGs from Saccharomyces cerevisiae, a non-pathogenic yeast, are endowed with such a property. For this purpose, we have developed a short-term training model based on lipopolysaccharide re-stimulation of mouse bone marrow-derived macrophages primed with S. cerevisiae BGs. Through a transcriptome analysis, we demonstrated that BGs induced a specific gene expression signature involving the PI3K/AKT signaling pathway as in human monocytes. Moreover, we showed that over-expression of Csf2 (that encodes for GM-CSF) was a Dectin-1-dependent feature of BG-induced priming of macrophages. Further experiments confirmed that GM-CSF up-regulated Dectin-1 cell surface expression and amplified macrophages response along BG-mediated training. However, the blockade of GM-CSFR demonstrated that GM-CSF was not primarily required for BG-induced training of macrophages although it can substantially improve it. In addition, we found that mouse macrophages trained with BGs upregulated their expression of the four and a half LIM-only protein 2 (Fhl2) in a Dectin-1-dependent manner. Consistently, we observed that intracellular levels of FHL2 increased after stimulation of macrophages with BGs. In conclusion, our experiments provide new insights on GM-CSF contribution to the training of cells from the monocytic lineage and highlights FHL2 as a possible regulator of BG-associated signaling

    Enrichment of BG from yeast cell wall extracts strongly abolishes TLR2/4-related NFκB/AP-1 activities conversely to dectin-1.

    No full text
    <p>(A-C) HEK-Blue<sup>™</sup>-hTLR2, -hTLR4 and hDectin-1 cells were incubated with serially diluted <i>Sc</i> BG cell wall extracts (BG15, BG65 and BG75) or their BG controls (zymosan, curdlan, dispersible and soluble WGP) for 16 h in culture medium containing the reporter reagent (37°C, 5% CO<sub>2)</sub>. Each cell line was stimulated with a 10-fold serial dilution (from 100 ng/mL to 0.001 ng/mL) of control ligand, Pam3CSK4 for HEK-Blue<sup>™</sup>-hTLR2 and ultraPure LPS for HEK-Blue<sup>™</sup>-hTLR4, respectively as shown in the panels on the right of A and B. The NFκB/AP-1-related activity of TLR2, TLR4 and dectin-1 was assessed in supernatants by a colorimetric assay. The OD value of a blank control, which corresponds to the OD value of HEK-Blue detection medium, was subtracted from the OD values of samples. The results are presented as OD 650 nm values and are representative of three independent experiments.</p
    corecore