6 research outputs found

    Impact of Polyethylenimine Conjugation Mode on the Cell Transfection Efficiency of Silica Nanovectors

    No full text
    The conjugation of polyethylenimine (PEI) to silica nanoparticles has emerged as a useful strategy in gene delivery. Here we investigate the influence of the PEI conjugation mode on the transfection ability of plain silica nanoparticles. Surface functionalization with sulfonate- and chloride-bearing silanes modulates the amount and conformation of PEI and therefore the particles’ affinity for the plasmid, without impacting on cytotoxicity. However, transfection efficiency in both immortalized and primary cells is more directly correlated to the nature and strength of the particle–PEI interactions. It suggests that PEI detachment from the particle surface at the stage of endosomal escape is a key event in the plasmid delivery process. These data should provide fruitful guidelines for the fine tuning of colloidal surfaces intended for intracellular delivery of bioactive molecules

    Hydrothermal Carbon from Biomass: Structural Differences between Hydrothermal and Pyrolyzed Carbons via <sup>13</sup>C Solid State NMR

    No full text
    The objective of this paper is to better describe the structure of the hydrothermal carbon (HTC) process and put it in relationship with the more classical pyrolytic carbons. Indeed, despite the low energetic impact and the number of applications described so far for HTC, very little is known about the structure, reaction mechanism, and the way these materials relate to coals. Are HTC and calcination processes equivalent? Are the structures of the processed materials related to each other in any way? Which is the extent of polyaromatic hydrocarbons (PAH) inside HTC? In this work, the effect of hydrothermal treatment and pyrolysis are compared on glucose, a good model carbohydrate; a detailed single-quantum double-quantum (SQ-DQ) solid state <sup>13</sup>C NMR study of the HTC and calcined HTC is used to interpret the spectral region corresponding to the signal of furanic and arene groups. These data are compared to the spectroscopic signatures of calcined glucose, starch, and xylose. A semiquantitative analysis of the <sup>13</sup>C NMR spectra provides an estimation of the furanic-to-arene ratio which varies from 1:1 to 4:1 according to the processing conditions and carbohydrate employed. In addition, we formulate some hypothesis, validated by DFT (density functional theory) modeling associated with <sup>13</sup>C NMR chemical shifts calculations, about the possible furan-rich structural intermediates that occur in the coalification process leading to condensed polyaromatic structures. In combination with a broad parallel study on the HTC processing conditions effect on glucose, cellulose, and raw biomass (Falco, C.; Baccile, N.; Titirici, M.-M. <i>Green Chem.</i>, <b>2011</b>, DOI: 10.1039/C1GC15742F), we propose a broad reaction scheme and in which we show that, through HTC, it is possible to tune the furan-to-arene ratio composing the aromatic core of the produced HTC carbons, which is not possible if calcination is used alone, in the temperature range below 350 °C

    How High Concentrations of Proteins Stabilize the Amorphous State of Calcium Orthophosphate: A Solid-State Nuclear Magnetic Resonance (NMR) Study of the Casein Case

    No full text
    Understanding how proteins stabilize amorphous calcium <i>ortho</i>-phosphate (ACP) phases is of great importance in biology and for pharmaceutical or food applications. Until now, most of the former investigations about ACP–protein stability and equilibrium were performed under conditions where ACP colloidal nanoclusters are surrounded by low to moderate concentrations of peptides or proteins (15–30 g L<sup>–1</sup>). As a result, the question of ACP–protein interactions in highly concentrated protein systems has clearly been overlooked, whereas it corresponds to actual industrial conditions such as drying or membrane filtration in the dairy industry for instance. In this study, the structure of an ACP phase is monitored in association with one model phosphorylated protein (casein) using solid-state nuclear magnetic resonance (ssNMR) under two conditions of high protein concentration (300 and 400 g L<sup>–1</sup>). At both concentrations and at 25 °C, it is found that the caseins maintain the mineral phase in an amorphous form with no detectable influence on its structure or size. Interestingly, and in both cases, a significant amount of the nonphosphorylated side chains interacts with ACP through hydrogen bonds. The number of these interacting side chains is found to be higher at the highest casein concentration. At 45 °C, which is a destabilizing temperature of ACP under protein-free conditions, the amorphous structure of the mineral phase is partially transformed at a casein concentration of 300 g L<sup>–1</sup>, while it remains almost intact at a casein concentration of 400 g L<sup>–1</sup>. Therefore, these results clearly indicate that increasing the concentration of proteins favors ACP–protein interactions and stabilizes the ACP clusters more efficiently

    Nanostructured Ultrafast Silicon-Tip Optical Field-Emitter Arrays

    No full text
    Femtosecond ultrabright electron sources with spatially structured emission are an enabling technology for free-electron lasers, compact coherent X-ray sources, electron diffractive imaging, and attosecond science. In this work, we report the design, modeling, fabrication, and experimental characterization of a novel ultrafast optical field emission cathode comprised of a large (>100 000 tips), dense (4.6 million tips·cm<sup>–2</sup>), and highly uniform (<1 nm tip radius deviation) array of nanosharp high-aspect-ratio silicon columns. Such field emitters offer an attractive alternative to UV photocathodes while providing a direct means of structuring the emitted electron beam. Detailed measurements and simulations show pC electron bunches can be generated in the multiphoton and tunneling regime within a single optical cycle, enabling significant advances in electron diffractive imaging and coherent X-ray sources on a subfemtosecond time scale, not possible before. At high charge emission yields, a slow rollover in charge is explained as a combination of the onset of tunneling emission and the formation of a virtual cathode
    corecore