9,098 research outputs found
Stein's method, Malliavin calculus, Dirichlet forms and the fourth moment theorem
The fourth moment theorem provides error bounds of the order in the central limit theorem for elements of Wiener chaos of
any order such that . It was proved by Nourdin and
Peccati (2009) using Stein's method and the Malliavin calculus. It was also
proved by Azmoodeh, Campese and Poly (2014) using Stein's method and Dirichlet
forms. This paper is an exposition on the connections between Stein's method
and the Malliavin calculus and between Stein's method and Dirichlet forms, and
on how these connections are exploited in proving the fourth moment theorem
Diffractive Dijet Production in Deep Inelastic Scattering and Photon-Hadron Collisions in the Color Glass Condensate
We study exclusive dijet production in coherent diffractive processes in deep
inelastic scattering and real (and virtual) photon-hadron (-h)
collisions in the Color Glass Condensate formalism at leading order. We show
that the diffractive dijet cross section is sensitive to the color-dipole
orientation in the transverse plane, and is a good probe of possible
correlations between the -dipole transverse separation vector \r
and the dipole impact parameter \b. We also investigate the diffractive dijet
azimuthal angle correlations and -distributions in -h
collisions and show that they are sensitive to gluon saturation effects in the
small- region. In particular, we show that the -distribution of
diffractive dijet photo-production off a proton target exhibits a dip-type
structure in the saturation region. This effect is similar to diffractive
vector meson production. Besides, at variance with the inclusive case, the
effect of saturation leads to stronger azimuthal correlations between the jets.Comment: 15 pages, 10 figures; v2: a clarifying Appendix added, 3 new plots
added, references added. The version to appear in PL
On the use of the IAST method for gas separation studies in porous materials with gate-opening behavior
Highly flexible nanoporous materials, exhibiting for instance gate opening or
breathing behavior, are often presented as candidates for separation processes
due to their supposed high adsorption selectivity. But this view, based on
"classical" considerations of rigid materials and the use of the Ideal Adsorbed
Solution Theory (IAST), does not necessarily hold in the presence of framework
deformations. Here, we revisit some results from the published literature and
show how proper inclusion of framework flexibility in the osmotic thermodynamic
ensemble drastically changes the conclusions, in contrast to what intuition and
standard IAST would yield. In all cases, the IAST method does not reproduce the
gate-opening behavior in the adsorption of mixtures, and may overestimates the
selectivity by up to two orders of magnitude
Pork Versus Public Goods: An Experimental Study of Public Good Provision Within a Legislative Bargaining Framework
We experimentally investigate a legislative bargaining model with both public and particularistic goods. Consistent with the qualitative implications of the model: There is near exclusive public good provision in the pure public good region, in the pure private good region minimum winning coalitions sharing private goods predominate, and in the ‘mixed’ region proposers generally take some particularistic goods for themselves, allocating the remainder to public goods. As in past experiments, proposer ower is not nearly as strong as predicted, resulting in public good provision decreasing in the mixed region as its relative value increases, which is inconsistent with the theory.Legislative Bargaining, Public Goods, Efficiency
On tidal capture of primordial black holes by neutron stars
The fraction of primordial black holes (PBHs) of masses g
in the total amount of dark matter may be constrained by considering their
capture by neutron stars (NSs), which leads to the rapid destruction of the
latter. The constraints depend crucially on the capture rate which, in turn, is
determined by the energy loss by a PBH passing through a NS. Two alternative
approaches to estimate the energy loss have been used in the literature: the
one based on the dynamical friction mechanism, and another on tidal
deformations of the NS by the PBH. The second mechanism was claimed to be more
efficient by several orders of magnitude due to the excitation of particular
oscillation modes reminiscent of the surface waves. We address this
disagreement by considering a simple analytically solvable model that consists
of a flat incompressible fluid in an external gravitational field. In this
model, we calculate the energy loss by a PBH traversing the fluid surface. We
find that the excitation of modes with the propagation velocity smaller than
that of PBH is suppressed, which implies that in a realistic situation of a
supersonic PBH the large contributions from the surface waves are absent and
the above two approaches lead to consistent expressions for the energy loss.Comment: 7 page
Slow quench dynamics of Mott-insulating regions in a trapped Bose gas
We investigate the dynamics of Mott-insulating regions of a trapped bosonic
gas as the interaction strength is changed linearly with time. The bosonic gas
considered is loaded into an optical lattice and confined to a parabolic
trapping potential. Two situations are addressed: the formation of Mott domains
in a superfluid gas as the interaction is increased, and their melting as the
interaction strength is lowered. In the first case, depending on the local
filling, Mott-insulating barriers can develop and hinder the density and energy
transport throughout the system. In the second case, the density and local
energy adjust rapidly whereas long range correlations require longer time to
settle. For both cases, we consider the time evolution of various observables:
the local density and energy, and their respective currents, the local
compressibility, the local excess energy, the heat and single particle
correlators. The evolution of these observables is obtained using the
time-dependent density-matrix renormalization group technique and comparisons
with time-evolutions done within the Gutzwiller approximation are provided.Comment: 15 pages, 13 figure
- …