186 research outputs found

    ContribuciĂł a l'estudi de la "metropatia hemorrĂ gica"

    Get PDF

    Segona nota sobre tècnica histològica

    Get PDF

    ORIGINALES: Etiopatogenia del cáncer del pulmón

    Get PDF

    Terrestrial-type planet formation: Comparing different types of initial conditions

    Get PDF
    To study the terrestrial-type planet formation during the post oligarchic growth, the initial distributions of planetary embryos and planetesimals used in N-body simulations play an important role. Most of these studies typically use ad hoc initial distributions based on theoretical and numerical studies. We analyze the formation of planetary systems without gas giants around solar-type stars focusing on the sensitivity of the results to the particular initial distributions of planetesimals and embryos. The formation of terrestrial planets in the habitable zone (HZ) and their final water contents are topics of interest. We developed two different sets of N-body simulations from the same protoplanetary disk. The first set assumes ad hoc initial distributions for embryos and planetesimals and the second set obtains these distributions from the results of a semi-analytical model which simulates the evolution of the gaseous phase of the disk. Both sets form planets in the HZ. Ad hoc initial conditions form planets in the HZ with masses from 0.66M⊕0.66M_{\oplus} to 2.27M⊕2.27M_{\oplus}. More realistic initial conditions obtained from a semi-analytical model, form planets with masses between 1.18M⊕1.18M_{\oplus} and 2.21M⊕2.21M_{\oplus}. Both sets form planets in the HZ with water contents between 4.5% and 39.48% by mass. Those planets with the highest water contents respect to those with the lowest, present differences regarding the sources of water supply. We suggest that the number of planets in the HZ is not sensitive to the particular initial distribution of embryos and planetesimals and thus, the results are globally similar between both sets. However, the main differences are associated to the accretion history of the planets in the HZ. These discrepancies have a direct impact in the accretion of water-rich material and in the physical characteristics of the resulting planets.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 9 figure

    Embriologia del fol·licle de graaf

    Get PDF

    Extracting topological features from dynamical measures in networks of Kuramoto oscillators

    Get PDF
    The Kuramoto model for an ensemble of coupled oscillators provides a paradigmatic example of non-equilibrium transitions between an incoherent and a synchronized state. Here we analyze populations of almost identical oscillators in arbitrary interaction networks. Our aim is to extract topological features of the connectivity pattern from purely dynamical measures, based on the fact that in a heterogeneous network the global dynamics is not only affected by the distribution of the natural frequencies, but also by the location of the different values. In order to perform a quantitative study we focused on a very simple frequency distribution considering that all the frequencies are equal but one, that of the pacemaker node. We then analyze the dynamical behavior of the system at the transition point and slightly above it, as well as very far from the critical point, when it is in a highly incoherent state. The gathered topological information ranges from local features, such as the single node connectivity, to the hierarchical structure of functional clusters, and even to the entire adjacency matrix.Comment: 11 pages, 10 figure

    Chemical composition of Earth-like planets

    Full text link
    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.Comment: 3 pages, 4 figures - Accepted for publication in the Bolet\'in de la Asociaci\'on Argentina de Astronom\'ia, vol.5

    RectificaciĂłn

    Get PDF

    Effects of an eccentric inner Jupiter on the dynamical evolution of icy body reservoirs in a planetary scattering scenario

    Get PDF
    Aims. We analyze the dynamics of small body reservoirs under the effects of an eccentric inner giant planet resulting from a planetary scattering event around a 0.5 M⊙ star. Methods. First, we used a semi-analytical model to define the properties of the protoplanetary disk that lead to the formation of three Jupiter-mass planets. Then, we carried out N-body simulations assuming that the planets are close to their stability limit together with an outer planetesimal disk. In particular, the present work focused on the analysis of N-body simulations in which a single Jupiter-mass planet survives after the dynamical instability event. Results. Our simulations produce outer small body reservoirs with particles on prograde and retrograde orbits, and other ones whose orbital plane flips from prograde to retrograde and back again along their evolution (“Type-F particles”). We find strong correlations between the inclination i and the ascending node longitude Ω of Type-F particles. First, Ω librates around 90° or/and 270°. This property represents a necessary and sufficient condition for the flipping of an orbit. Moreover, the libration periods of i and Ω are equal and they are out to phase by a quarter period. We also remark that the larger the libration amplitude of i, the larger the libration amplitude of Ω. We analyze the orbital parameters of Type-F particles immediately after the instability event (post IE orbital parameters), when a single Jupiter-mass planet survives in the system. Our results suggest that the orbit of a particle can flip for any value of its post IE eccentricity, although we find only two Type-F particles with post IE inclinations i ≲ 17°. Finally, our study indicates that the minimum value of the inclination of the Type-F particles in a given system decreases with an increase in the eccentricity of the giant planet.Fil: Zanardi, Macarena. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: de Elia, Gonzalo Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Di Sisto, Romina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Naoz, S.. University of California at Los Angeles; Estados UnidosFil: Li, G.. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Guilera, O. M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Brunini, A.. Universidad Nacional de la Patagonia Austral; Argentin
    • …
    corecore