38 research outputs found

    A Bayesian Network for Flood Detection Combining SAR Imagery and Ancillary Data

    Get PDF
    Accurate flood mapping is important for both planning activities during emergencies and as a support for the successive assessment of damaged areas. A valuable information source for such a procedure can be remote sensing synthetic aperture radar (SAR) imagery. However, flood scenarios are typical examples of complex situations in which different factors have to be considered to provide accurate and robust interpretation of the situation on the ground. For this reason, a data fusion approach of remote sensing data with ancillary information can be particularly useful. In this paper, a Bayesian network is proposed to integrate remotely sensed data, such as multitemporal SAR intensity images and interferometric-SAR coherence data, with geomorphic and other ground information. The methodology is tested on a case study regarding a flood that occurred in the Basilicata region (Italy) on December 2013, monitored using a time series of COSMO-SkyMed data. It is shown that the synergetic use of different information layers can help to detect more precisely the areas affected by the flood, reducing false alarms and missed identifications which may affect algorithms based on data from a single source. The produced flood maps are compared to data obtained independently from the analysis of optical images; the comparison indicates that the proposed methodology is able to reliably follow the temporal evolution of the phenomenon, assigning high probability to areas most likely to be flooded, in spite of their heterogeneous temporal SAR/InSAR signatures, reaching accuracies of up to 89%

    The IASI Water Deficit Index to Monitor Vegetation Stress and Early Drying in Summer Heatwaves: An Application to Southern Italy

    Get PDF
    The boreal hemisphere has been experiencing increasing extreme hot and dry conditions over the past few decades, consistent with anthropogenic climate change. The continental extension of this phenomenon calls for tools and techniques capable of monitoring the global to regional scales. In this context, satellite data can satisfy the need for global coverage. The main objective we have addressed in the present paper is the capability of infrared satellite observations to monitor the vegetation stress due to increasing drought and heatwaves in summer. We have designed and implemented a new water deficit index (wdi) that exploits satellite observations in the infrared to retrieve humidity, air temperature, and surface temperature simultaneously. These three parameters are combined to provide the water deficit index. The index has been developed based on the Infrared Atmospheric Sounder Interferometer or IASI, which covers the infrared spectral range 645 to 2760 cm−1 with a sampling of 0.25 cm−1. The index has been used to study the 2017 heatwave, which hit continental Europe from May to October. In particular, we have examined southern Italy, where Mediterranean forests suffer from climate change. We have computed the index’s time series and show that it can be used to indicate the atmospheric background conditions associated with meteorological drought. We have also found a good agreement with soil moisture, which suggests that the persistence of an anomalously high water deficit index was an essential driver of the rapid development and evolution of the exceptionally severe 2017 droughts

    Integration of persistent scatterer interferometry and ground data for landslide monitoring: the Pianello landslide (Bovino, Southern Italy)

    Get PDF
    We present an example of integration of persistent scatterer interferometry (PSI) and in situ measurements over a landslide in the Bovino hilltop town, in Southern Italy. First, a wide-area analysis of PSI data, derived from legacy ERS and ENVISAT SAR image time series, highlighted the presence of ongoing surface displacements over the known limits of the Pianello landslide, located at the outskirts of the Bovino municipality, in the periods 1995–1999 and 2003–2008, respectively. This prompted local authorities to install borehole inclinometers on suitable locations. Ground data collected by these sensors during the following years were then compared and integrated with more recent PSI data from a series of Sentinel-1 images, acquired from March 2014 to October 2016. The integration allows sketching a consistent qualitative model of the landslide spatial and subsurface structure, leading to a coherent interpretation of remotely sensed and ground measurements. The results were possible thanks to the synergistic operation of local authorities and remote sensing specialists, and could represent an example for best practices in environmental management and protection at the regional scale

    Improved method for discriminating agricultural crops using geostatistics and remote sensing

    No full text
    corecore