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Abstract—Accurate flood mapping is important for both plan-
ning activities during emergencies and as a support for the succes-
sive assessment of damaged areas. A valuable information source
for such a procedure can be remote sensing synthetic aperture
radar (SAR) imagery. However, flood scenarios are typical exam-
ples of complex situations in which different factors have to be
considered to provide accurate and robust interpretation of the
situation on the ground. For this reason, a data fusion approach
of remote sensing data with ancillary information can be par-
ticularly useful. In this paper, a Bayesian network is proposed
to integrate remotely sensed data, such as multitemporal SAR
intensity images and interferometric-SAR coherence data, with
geomorphic and other ground information. The methodology is
tested on a case study regarding a flood that occurred in the
Basilicata region (Italy) on December 2013, monitored using a time
series of COSMO-SkyMed data. It is shown that the synergetic use
of different information layers can help to detect more precisely
the areas affected by the flood, reducing false alarms and missed
identifications which may affect algorithms based on data from
a single source. The produced flood maps are compared to data
obtained independently from the analysis of optical images; the
comparison indicates that the proposed methodology is able to
reliably follow the temporal evolution of the phenomenon, assign-
ing high probability to areas most likely to be flooded, in spite
of their heterogeneous temporal SAR/InSAR signatures, reaching
accuracies of up to 89%.

Index Terms—Bayesian networks (BNs), data fusion, flood map-
ping, synthetic aperture radar (SAR) change detection, synthetic
aperture radar (SAR)/interferometric SAR (InSAR) time series
analysis.
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I. INTRODUCTION

F LOODING is a recurrent and dramatic natural disaster
that affects several areas in the world, both in tropical

and temperate regions, often causing great damages to lives
and property, industrial settlements and infrastructures, and
artistic and historical sites, aside from dramatically affecting
local ecosystems. It is expected that the frequency of these
phenomena will increase in the next future, due to climate
change and the occurrence of several extreme weather events.
Accurate knowledge of flood extents is crucial to improve di-
saster management and to mitigate the impact of flood episodes,
during both the emergency phase, when an overall view is
needed in order to plan relief efforts, and the aftermath, for the
assessment of damaged areas.

Remote sensing data of affected areas, together with effective
methods to exploit their information, can be particularly useful
in the damage estimation phase: they offer a synoptic overview
of wide areas, giving a snapshot of the extents of the flooding
event [1]–[3]. Both optical and radar data have been used to
infer information about the flooded areas [4]. Optical data have
been used, particularly in urban areas [5], [6], where the effects
of shadowing, layover, and foreshortening limit the results
obtained by synthetic aperture radar (SAR) images, although
new insight on these topics has been recently provided, e.g.,
in [3] and [7]. SAR sensors are particularly useful to produce
flood maps, owing to their all-weather and day–night opera-
tion capability [8]–[10]. In particular, the latest generation of
SAR sensors, such as TerraSAR-X and the COSMO-SkyMed
constellation, supplies a large amount of daily acquired radar
images, characterized by high spatial resolution, that can be
particularly useful in flood detection problems [3], [11], [12].

Nevertheless, flood scenarios are typical examples of com-
plex situations in which different factors have to be considered
to provide accurate and robust interpretation of the situation on
the ground. The presence of many land cover types, each one
with a particular signature in the presence of flood, requires
modeling the behavior of different “objects” in the scene (not
necessarily associated to land cover categories) in order to
associate them to flood or no-flood conditions. In principle,
a single SAR image acquired during an event could provide
a flood map: its capability to detect inundations is based on
the low backscatter response from smooth water covering the
terrain, which allows to efficiently separate flooded areas from
rougher nonflooded terrain that, instead, scatters the imping-
ing signal in many different directions and produces a higher
backscattering coefficient (σ0). However, many factors poten-
tially complicate this simple situation. For instance, the contrast
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between dry soil and flooded one can be significantly reduced
in the presence of wind roughening the water surface. Also,
vertical structures on the ground, such as trees or man-made
objects, could determine a double bounce mechanism of the
radar signal, which is enhanced when the ground surface is
flooded with respect to dry conditions: this can make the radar
return from vegetated or urban flooded areas higher than that
under nonflooded conditions [12].

In general, the exploitation of a set of images (as a multi-
temporal stack) seems to provide more satisfactory results in
the presence of these critical situations [8], [13]. Moreover, the
interferometric SAR (InSAR) coherence information can be a
viable means for detecting flooded areas as an extension of
conventional change detection methods [14], [15]. However, the
relative difficulty in planning pairs of SAR acquisitions suitable
for InSAR use in coincidence with flood events, for legacy
sensors, posed some problems in devising operational scenarios
for the use of InSAR in flood monitoring. A renewed attention
to this issue came with the availability of the aforementioned
high-resolution sensors.

Recently, the combined analysis of multi-temporal SAR
intensity and coherence trends has been proposed to detect
flooded areas, reducing false alarms and missed identifications
which affect algorithms based on SAR intensity alone [16],
[17]. More generally, the fusion of multitemporal, multisensor,
multiresolution, and/or multiplatform Earth observation image
data, together with other ancillary information, seems to have a
key role in the pursuit of a consistent interpretation of complex
scenes: the decisions or actions taken considering data synergy
exploitation are better (both qualitatively and quantitatively, in
terms of accuracy, robustness, etc.) than would be possible if
the sources were used individually [18]. In the case of flooding,
distance from the river, terrain elevation, hydrologic informa-
tion, or some combination thereof can add useful information
that leads to a better performance in flood detection. In fact, the
integration of remote sensing-derived flood extent maps and
hydraulic models is now a promising research field (see, e.g.,
[19] and the references therein). In [20], a procedure was de-
veloped in a geographic information system (GIS) environment
in order to estimate the flooded area combining SAR imagery
with ancillary information extracted from digital elevation
topography. In [21], two different statistical methods have been
used to integrate SAR data with high-precision topography
and a river flow model. More recently, flood maps have been
produced combining multitemporal SAR data and a hydrody-
namic model by using a classification algorithm based on fuzzy
logic [22].

In this paper, we propose a statistical model able to perform
flood detection by using information and data fusion. It is
based on Bayesian networks (BNs), one of the most common
types of probabilistic graphical models combining probability
theory and graph theory, which introduce graph structures into
a probabilistic model to represent dependence assumptions
among the involved variables [23], [24]. BNs are a statistically
well-founded method to combine imagery information with
ancillary data, such as distance from the river, digital elevation
models (DEMs), hydraulic models, etc. This combination is not
restricted to a specific sensor, and it can exploit the information

Fig. 1. BN scheme.

from time series of images. In our case, it is also capable of
describing the dynamics of the flooding event.

In recent years, BNs and, more generally, probabilistic graph-
ical models have been used as a data mining tool in many
research fields, but rarely to process remote sensing data. In
[25], a BN has been applied to two Landsat TM scenes ac-
quired at different times on the same area, obtaining an overall
change detection classification accuracy that overcomes the
one obtained by other methods. However, to our knowledge,
the capability of BNs to join different kinds of data has been
scarcely exploited. In [5], a simple probabilistic graphical
model has been applied to estimate the state of roads during
flooding, combining a DEM with satellite optical images: the
obtained results outperform other methods based only on the
exploitation of imagery data or only on DEM information. On
the other hand, BNs have been successfully used to construct
risk assessment systems for natural disasters, such as rock
falls [26], avalanches [27], or wildfires [28]: various kinds of
data, such as land cover types extracted from the Corine Land
Cover database, road and building densities, have been fused
by means of BNs to obtain reliable risk maps, although none
included remotely sensed imagery. In this paper, a BN is used
in a flood detection problem to integrate multitemporal SAR
intensity and InSAR coherence data with geomorphic and other
ground information.

This paper is organized as follows. In Section II, the
proposed method is discussed in detail. In Section III, some
information on the study area and the considered flood event
are reported, and the available data, as well as the reference
data used for the evaluation, is described. The experimental
results are presented in Section IV. Finally, in Section V, some
conclusions are drawn.

II. METHODS: BNS FOR FLOOD MAP PRODUCTION

BNs combine probability theory and graph theory, intro-
ducing graph structures into a probabilistic model to repre-
sent dependence assumptions among the involved variables.
The interactions of the variables of a “system” are encoded
through a directed acyclic graph (DAG) (see Fig. 1): the nodes
of the DAG represent the random variables, and the edges
among them correspond to the direct influence of one node on
another, modeled as conditional probabilities [23], [24]. The
BN structure thus provides information about the underlying
processes and the way that various variables communicate and
share “information” as it spreads around the network. For-
mally speaking, the DAG encodes independence assumptions
between variables.

A BN is characterized by many attractive properties that can
be particularly useful in modeling many real-world systems.
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p(F = flood|i = i∗, γ = γ∗, t = t∗, d = d∗)

=
p(F = flood, i = i∗, γ = γ∗, t = t∗, d = d∗)

p(i = i∗, γ = γ∗, t = t∗, d = d∗)

=

[∑
Ci

p(i = i∗|Ci)p(Ci|F = flood)
] [∑

Cγ
p(γ = γ∗|Cγ)p(Cγ |F = flood)

]
p(F = flood|t = t∗, d = d∗)

∑
F

[∑
Ci

p(i = i∗|Ci)p(Ci|F )
] [∑

Cγ
p(γ = γ∗|Cγ)p(Cγ |F )

]
p(F |t = t∗, d = d∗)

(1)

First of all, it naturally provides a general methodology for
handling data fusion, allowing the joint distribution of all
variables to be written down tractably, even in cases where
its explicit representation is particularly large. Moreover, a BN
graphical structure can be based on prior knowledge, allowing
to construct models that provide an accurate reflection of the
understanding of a domain. Alternatively, the structure may be
learned from data, or even a combination of the two approaches
can be used: pose a prior BN, and update it based on obser-
vations. Finally, it enables inference: as previously mentioned,
the BN captures the joint distribution of all variables, and, via
inference, any/all conditional distribution(s) of interest, in any
direction, can be expressed. These features appear particularly
suited for the application domain of natural disaster monitoring
and assessment [29].

We consider here a BN designed as represented in Fig. 1: it
combines information extracted by a set of images, and some
ancillary information about the a priori spatial distribution
of flood in the analyzed area. In detail, the random variable
F is discrete and consists of only two states, flood and no
flood, so that P (F = flood) = 1 − P (F = no flood). This is
the variable that we want to estimate by statistical inference.
The variable i corresponds to the n-dimensional vector obtained
from the SAR intensity imagery. Since, often, the flood state
does not exhibit a simple causal relation with the imagery, due
to the presence of particular types of land cover, particular
backscattering mechanisms, etc., the intermediate variable class
Ci is introduced [5]. It consists of Ki possible states that can be
determined in two different ways: either by using some a priori
knowledge on the scene or by extracting them automatically
from the imagery. Anyway, the number Ki of possible states
and the usefulness of the Ci variable are strongly dependent on
the complexity of the analyzed scene. For example, if the area
under observation is characterized only by unvegetated/barren
areas and a single SAR intensity image is available, the variable
Ci is unnecessary, and the i random variable can be directly
connected to F : the backscatter values of flooded areas, in this
case, will be very low and well separated from nonflooded
ones. Otherwise, for more complex scenarios, such as in the
presence of vegetated, forested, or urban areas, or if we want
to follow the flood dynamics owing to the availability of multi-
temporal data, the introduction of the intermediate variable Ci

allows to classify the various scattering behaviors into a finite
number of types and then to focus the attention on the most
interesting ones [5], [8]. The variable γ corresponds to the
m-dimensional vector obtained from the multitemporal InSAR
coherence imagery. Similarly to the previous case, this variable

is not directly connected with the F one, and a hidden Cγ

variable is introduced. It consists of Kγ possible states, for
which the previous considerations hold. Finally, the variables
t and d represent some ancillary information, i.e., a geo-
morphic flooding index (GFI) derived from a light-detection-
and-ranging-derived DEM at 3-m posting, and the geometric
distance from the river, properly modulated by the intensity of
the considered event (the maximum expected distance reached
by the river flood is estimated by considering the effective water
level measurements along the river, available as readings from
a gauge station), respectively. The t variable is computed from
the definition in [30] and [31] as follows:

t = ln

(
hr

H

)

where hr is a function of the contributing area Ar in the nearest
section of the drainage network hydrologically connected to the
point under exam and H is the elevation difference between the
cell under exam and the final point of the previously identified
path. In this index, the parameter hr is representative of the
probable water level in a cross section of the river hydraulically
connected to the point, and it is computed as a power law
of Ar with the exponent set equal to 0.3. The variable t is
introduced to assign correct a priori flood probability to zones,
even relatively far from the river course, that may be flooded
due to the presence of dense channel networks, which become
a preferential vector for the flow during a flood.

The second component of the BN is a set of local proba-
bility models. As previously mentioned, the relations between
variables are modeled as conditional probabilities, and the con-
ditional independence assumptions hold, i.e., if two variables
are not directly connected in the graph, they are independent.
We want to infer the value of the conditional probability of the
variable F , which derives from the BN structure in Fig. 1 and is
given in (1) shown at the top of the page, where i∗, γ∗, t∗, and
d∗ are observed values for the random variables i, γ, t, and d,
respectively.

In particular, the conditional probability p(i|Ci) is given
as an n-dimensional probability function generated by a mix-
ture of Ki Gaussian distributions, N (µ,Σ). The parameters
{µCi,ΣCi} of each multitemporal intensity function have been
automatically computed by applying a K-means algorithm [32].
The number Ki of clusters Ci has been determined by a trial-
and-error procedure, in order to find the value that provides a
good representation of different classes actually present in the
analyzed scene. Similarly, the conditional probability p(γ|Cγ)
is given as an m-dimensional probability function generated by
a mixture of Kγ Gaussian distributions. Again, the parameters
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{µCγ ,ΣCγ} of each coherence function have been automat-
ically computed by applying a K-means algorithm, and the
number Kγ of clusters Cγ has been determined by a trial-and-
error procedure. It is worth noting that SAR and InSAR data
distributions are usually modeled through Gamma or Wishart
functions [33]–[35]; however, if the number of looks of the
filtered SAR images is sufficiently high, both the SAR intensity
and InSAR coherence pdfs can be well approximated with
Gaussian functions. Thus, the aforementioned use of Gaussian
multivariate pdfs is justified in view of the filtering applied to
the data in the preprocessing steps (see Section III-B). Some
considerations on the clustering step and its influence on the
applicability and portability of the whole proposed method
are in order. First of all, our structure implies that the InSAR
coherence is considered as a channel independent from the
SAR intensity. InSAR coherence carries information about
the temporal stability of the microscopic arrangement of the
individual scatterers on the terrain, so it measures the degree of
similarity of two SAR images, at the level of the speckle pattern
of single pixels. Therefore, strictly, the coherence computed
between two SAR acquisitions is not independent from them.
However, our probability distribution in this case satisfies a
conditional independence property, i.e., if we know that a
given pixel corresponds to a flooded area, the knowledge of
the coherence value no longer gives us information about the
intensity. More formally, P (i|F = flood, γ = γ∗) = P (i|F =
flood). Similarly, P (γ|F = flood, i = i∗) = P (γ|F = flood).
Therefore, the conditional independence holds.

Moreover, the best number of clusters is not generally known
in advance. As previously stated, it depends on the analyzed
scene, on the number of available images, and on the extension
of the flood with respect to the whole scene. This information
allows to narrow our search, but in general, a trial-and-error
procedure is needed. It can be time consuming if several tests
are performed. However, even in this case, the BN framework
helps to reduce the computational time and cost because it
guarantees good performances even if the search is not refined:
it is mandatory to avoid underclustering, but overclustering
is not a problem. In fact, if the number of clusters is too
low, there could be mixed clusters, composed by objects with
different spectral signatures. In this case, the final result could
be severely compromised. On the contrary, if the number of
clusters is higher than the best one, there could be several
clusters associated to the same spectral signature, thus having
equal a priori probability values P (F |Ck), with k = i, γ, but
this does not compromise the final result.

The probabilities p(Ci|F ) and p(Cγ |F ) have been computed
by applying the Bayes rule

p(Ck|F ) =
p(F |Ck)P (Ck)∑
Ck

p(F |Ck)P (Ck)
(2)

where the P (Ck) terms, with k ∈ {i, γ}, are computed from
the results of the K-means algorithm and the P (F |Ck) are
assigned by the user. The conditional probability p(F |t, d) has
been modeled as a sigmoid function

p(F |t, d) =
1

1 + exp [−(At − Bd + C)]
(3)

where the A, B, and C parameters are set by some a priori
knowledge about the scene and the considered event. In par-
ticular, the A and B parameters represent the relative weight
given to the two variables t and d, respectively, and regulate the
span of the sigmoidal function in (3). The C parameter controls
the set of points where p(F |t, d) = 0.5 (see the Appendix for
further considerations).

Summarizing, the proposed BN structure encodes our intu-
ition about “the way the world works” in a flood detection
problem, when the aforementioned variables are considered.
However, the proposed method is quite general and can be con-
sidered as a particular case of a general “class” of BNs, in which
M conditional independent imagery sources and N independent
ancillary data can be considered. In particular, it holds also if
one source of information is lacking, without having to modify
our algorithm structure at all. For example, if one of the two
ancillary information sources is not available, it is sufficient to
put the corresponding coefficient (A or B) equal to 0 in (3),
and the model still holds. If no ancillary information is avail-
able, the following condition is verified: p(F = flood|t, d) =
p(F = no flood|t, d) = 0.5, and (1) still holds. Similarly, if
one of the two imagery sources x is not available, the fol-
lowing condition is verified:

∑
Cx

p(x|Cx)p(Cx|F = flood) =∑
Cx

p(x|Cx)p(Cx|F = no flood) = 0.5 and the model is
again usable.

III. STUDY AREA AND DATA SET

A. Bradano River Flood Event in December 2013

Several flood events occurred in the last years in the
Basilicata region (Southern Italy) and, in particular, in its coastal
area on the Jonian Sea, due to its intrinsic lithological and
geomorphological properties [36]. In this area, several rivers
are flowing (see Fig. 2). The surrounding land cover is mainly
agricultural, characterized by cereal and vegetable crops or
fruit shrubs, while an extended area near the river mouths and
along the coast is occupied by pine forest stands [37]. The
frequency of extreme events has increased, in the last five years
[38], causing several flooding episodes, even two–three in the
same year, with great damage for agriculture and industries.
This process is enhanced by the agricultural land use of the
alluvial plains, which has reduced the extent of the natural river
beds, increasing flood risk. We focus on one of such events
involving the Bradano and Basento river basins. It occurred
on November 30–December 7, 2013, and was due to rainfall
starting from November 30 and continuing until December 5.
In particular, we consider an area around the Bradano river, for
which the peak flow (measured at the gauging station “SS106”
close to the outlet; see Fig. 3) was recorded in the evening of
December 1, with the discharge reaching about 800 m3/s, and
caused an inundation that propagated in the surrounding areas,
producing floods during the following four days. Another less
relevant peak of about 300 m3/s was registered on December 2.
Thereafter, the rainfall event was exhausted, and the dams
released some of the flood volume stored. The considered event
was triggered by a relevant amount of rainfall that reached the
value of about 130 mm in one day, while the total amount of
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Fig. 2. (a) Location map of the data set. The frame outlines the masters of the three interferometric combinations for 2010, 2011, and 2013, respectively, and
the Basento and Bradano rivers, as well as the location of the gauging station whose data are reported in Fig. 3. (b) Zoom map showing the GFI data set and
highlighting the two subareas (A and B), delimited by the different data availability (green and yellow lines). (c)–(l) SAR intensity maps ordered in time as in
Table I. (m)–(o) SAR coherence maps ordered in time as in Table I.
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Fig. 3. Temporal evolution of the water discharge (blue curve, left y-axis scale)
and rainfall (red curve, right y-axis scale) recorded at the SS106 gauging station
on the Bradano river. The vertical dashed lines indicate the time of the two SAR
acquisitions during the flood event. Data courtesy of Basilicata Civil Protection.

rainfall reached the value of about 170 mm. In particular, as
officially reported in the data of Basilicata Civil Protection,
on December 2, the Bradano river provoked inundations that
affected large areas concentrated along the river banks. In the
following days, the phenomenon was in a decreasing phase,
and the flood effects were propagating toward the coast, inter-
esting smaller areas progressively farther away from the river.
Nevertheless, this flood should be considered an ordinary event
that unfortunately produced significant inundation for a levee
failure. Part of the considered test area lies between the Bradano
and Basento rivers and could thus be potentially interested by
flood due to the cumulative action of both rivers.

B. SAR/InSAR Data Set

A series of three COSMO-SkyMed stripmap SAR images,
acquired close to the considered event, was available over
the analyzed area, with a ground pixel size of approximately
3 × 3 m2, acquired in the same geometry, polarization (VV),
and incidence angle (38◦), so that InSAR processing could
be performed. The acquisition dates are November 16 and
December 2 and 3, 2013. As can be noted, the two SAR acquisi-
tions of December 2 and 3 offer a useful observation data set to
follow the temporal evolution of the flood wave phenomenon,
which was in a crucial phase on December 2 and in a decreasing
one on the following day. The InSAR coherence computed
between these two images was also considered.

Other seven COSMO-SkyMed stripmap SAR images were
considered over the same area, acquired in the absence of flood
events on October 2, 3, and 10, 2010, January 17, 18, and
25, 2011, and February 18, 2011, respectively. The InSAR
coherence between October 2 and 3, 2010, and January 17
and 18, 2011, was considered as well. These additional SAR
data act here as a reference data set that allows to capture
multitemporal backscattering and coherence trends, aiding in
the detection of flood. The image frames acquired on 2011 do
not cover the whole study area; consequently, this has been
divided into two subareas (as depicted in the zoom map on
the right of Fig. 2), indicated as subarea A and subarea B,

TABLE I
DATES OF THE AVAILABLE SAR IMAGES AND PERPENDICULAR

BASELINES FOR THE USED INSAR PAIRS

respectively: in the first one, the whole set of ten SAR intensity
and three InSAR coherence images has been considered, and
in the second one, only six intensity and two coherence images
have been used.

As can be seen from Table I, the InSAR data set has rel-
ative spatial baselines well within the critical value (which,
for COSMO-SkyMed data, is of a few kilometers), which
ensures that the geometrical decorrelation is negligible [39].
Preprocessing included standard SAR intensity calibration,
InSAR coregistration, and coherence and phase estimation.
Interferometric processing was thus performed through the
DORIS open source software [40]. Images were precisely
coregistered using height information from SRTM data [41].
On the complex interferograms, a filtering step was performed
using a nonlocal approach [42], which computes averages of
homogeneous targets over large windows, with the number
of looks that adaptively varies between 1 and the maximum
size of the search window used, which, in our case, was set
to 25 × 25 pixels. Generally, a prefiltering step is considered
necessary when using SAR images in mapping applications, to
reduce the spatial heterogeneity of scattering intensity induced
by the coherent nature of the sensor. In our case, the adopted
nonlocal filtering paradigm increases the effective number of
looks of spatially homogeneous image areas while preserving
high resolution, which is a peculiar characteristic of new-
generation SAR sensors such as COSMO-SkyMed. Since the
analyzed area is mainly covered by agricultural fields, having
a number of looks that is considerably high, the Gaussian
assumption in the BN is justified, as shown in the intensity and
coherence histograms reported in Fig. 4. Final filtered intensity
and coherence products were geocoded to a common reference
frame, thus obtaining regular-grid UTM maps with a posting of
3 m in both dimensions.

C. Reference Data

Two different reference maps, independently obtained and
partially overlapped with the analyzed area, are available. The
first one, named GT1, has been obtained by the Copernicus
Emergency Mapping Service [43]. In this map, delivered at
a ground resolution of 5 m, a unique thematic layer, assess-
ing the delineation of the flooded areas, has been derived by
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Fig. 4. Histograms of (a) SAR intensity and (b) InSAR coherence.

visual interpretation from a GSD Spot 6 image, acquired on
December 4, 2013. The second one, indicated in the following
as GT2, has been extracted from a Pleiades-1B multispectral
image, at a ground resolution of 2 m, acquired on December 5,
2013. In this case, different informative layers have been ex-
tracted by visual inspection: the flooded areas on December 5
and the ones that have been probably inundated before the im-
age acquisition, characterized by the presence of mud or signs
of water stagnation. To each area, a score has been assigned,
ranging from 1 to 3, corresponding to the confidence level
(assigned by the expert analysis) that it has been actually
interested by inundation. A brief description of each score level
is reported hereafter:

1) areas flooded at the image acquisition time;
2) areas not flooded at the acquisition time, but in which

there are evident signs of water presence in the days
before and its stagnation;

3) areas not flooded at the acquisition time, but in which
there are only slight signs of previous water presence and
its stagnation.

It is worth noting that the last two levels in GT2 are partic-
ularly interesting in our case because they allow us to deduce
information temporally coincident with our SAR/InSAR data
set, composed by images acquired on December 2 and 3, 2013.
For the purpose of this application, we ignore their distinction
and lump them together. For these reasons, a new reference map
has been created by suitably merging information extracted by
the two aforementioned maps. It covers the area shared by
the two primary maps and contains the following information
layers:

1) areas flooded before December 4;

TABLE II
REFERENCE DATA DECISION TABLE

Fig. 5. Reference map GT. The extension of the considered GT area is
delimited by the yellow line. The red lines show the two subareas as in Fig. 2.
See text for label explanation.

2) areas flooded on December 4 and which could be flooded
also in earlier days;

3) areas flooded on both December 4 and 5 and which could
be flooded also in earlier days;

4) areas flooded from December 5 onward.

These layers have been obtained by the ones of GT1 and GT2
as summarized in Table II. The final GT map, resampled at
the resolution of 3 × 3 m2, is reported in Fig. 5. It is worth
noting that, in the reference data, some areas are labeled as
flooded from December 5 onward (class 4): these seem to be not
in agreement with the temporal evolution of the event, which
was in a waning phase on this day, as reported in Section III-A.
Such apparent inconsistencies may be due to the presence of
approximations in the photointerpretation process: first of all,
there is a field, very close to the river bank, that has been
wrongly labeled as “not flooded” in the GT1 map (see [43]).
Moreover, there are many small fields in GT2 that are not
visible in GT1 due to their different resolution.
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Fig. 6. Centroid values of (a and b) SAR intensity, and (c) InSAR coherence,
computed by the K-means algorithm, as a function of time for the most
significant clusters.

IV. EXPERIMENTAL RESULTS

A. Multitemporal Intensity Imagery Segmentation and
Probability Assignment

First of all, the conditional probabilities p(i|Ci) have been
computed as 10-D (or 6-D) probability functions generated by
a mixture of Gaussian distributions, as explained in Section II.
The parameters {µCi ,ΣCi} of each function have been au-
tomatically computed by the K-means algorithm. We have
performed various tests finding that Ki = 32 is a number of
clusters sufficient to identify univocally all the different types of
multitemporal scattering classes present in the data. Of these, a
subset represents objects of interest for the specific flood mon-
itoring experiment. In Fig. 6, the temporal trends of the mean
value of σ0 in some clusters are reported. In particular, mean
values that exhibit significant variations in correspondence with
the flood event are plotted. In Fig. 6(a), seven different trends
are shown. Of these, four are characterized by very small σ0

values on December 2, while before and after this date, the radar
return is higher: regions showing this multitemporal signature
were considered as flooded only on December 2. Instead, the
other three trends exhibit low σ0 values both on December 2
and 3: it can be deduced that such signatures represent areas
flooded in both days. It is interesting to note that there is no
cluster showing low values of backscattering signal only on
December 3: this occurrence fully agrees with the information
concerning the rainfall phenomenon, which was almost finished
at this date. Also, most of the σ0 trends plotted in Fig. 6 show an

increase of several decibels (dB) on November 16, 2013. This
can be ascribed to the heavy rain which was falling on the area
at the time of this acquisition, recorded by meteo stations and
reported by several news websites (e.g., [44]), which is likely
to have increased the average backscatter level of the fields
in the area due to increased soil moisture. As a confirmation
of this interpretation, a whitish blob, most likely the signature
of heavy precipitation, not uncommon on X-band SAR images
(see, e.g., [45]), is also visible on a region (not shown) of the
same image acquired on November 16, some tens of kilometers
SW of the test site. In the other dates, the backscatter signals
are, instead, quite steady because no other changes are present
in these clusters. In fact, the whole data set is composed by
images acquired in winter and mainly covering agricultural
areas, not subject to agricultural practices in this period of the
year, and exhibiting no changes due to the phenological cycle
of their cultures.

Fig. 6(b) plots 11 different trends of σ0 value, all character-
ized by high backscattering signal values on December 2 and
3, similar to those on November 16, and 4–5 dB higher than
the preceding days: this could be explained by considering the
double bounce effect [12] or could be ascribed to increased
soil moisture. The absolute σ0 levels on the flood dates are
scattered on a relatively broad interval of more than 5 dB. This
may reflect the complexity of the phenomena and, in case of
double bounce, the variations in radar response due to plant
height, water depth, and their relative values. Moreover, it is
worth noting that these clusters contain almost 43% of the total
analyzed pixels and can be found scattered across the whole
scene. We did not have a priori detailed information concern-
ing land use. For example, we know that, in the area, some
agricultural fields covered by vineyards are present, which
could be affected, for their structure, by the double bounce
effect, but we did not know their location and extension at
the event time. The same situation occurs for other land use
classes or for the case of increased soil moisture. Fortunately,
in such cases, the BN helps us to manage our uncertainty and
lack of information, which is expressed in the P (F |Ci) terms
assigned. In particular, a value P (F |Ci) = 0.5 is given to con-
troversial signatures [e.g., the intensity signatures in Fig. 6(b)].
Conversely, high values of flood probability, P (F |Ci) = 0.9,
are assigned to clusters with a more straightforward interpreta-
tion as flooded fields, such as the ones reported in Fig. 6(a).
Finally, very low a priori probabilities, P (F |Ci) = 0.1, are
given to the other clusters showing negligible intensity vari-
ations on the flood dates with respect to the preceding days.
Subsequently, the probabilities P (Ci|F ) are computed by ap-
plying the Bayes rule (2), where the P (Ci) terms are assumed
to be proportional to the relative populations of the clusters
coming from the K-means algorithm.

B. Multitemporal Coherence Imagery Segmentation and
Probability Assignment

Independently from the intensity imagery segmentation,
the conditional probabilities p(γ|Cγ) were computed as 3-D
(or 2-D) probability functions generated by a mixture of
Gaussian distributions, as explained in Section II. On most
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types of natural terrain, coherence is expected to be low on areas
which have been inundated for some time during the interval
between the two InSAR acquisitions, but this signature is also
characteristic of other land cover classes such as permanent
water and forests, also present in the analyzed scene. The
availability of multiple InSAR coherence images is particularly
useful in the interpretation of flooded and nonflooded areas
because they allow to separate areas exhibiting permanently
low coherence values (permanent water or forests) and areas
subjected to a decrease of coherence value during the inun-
dation period (flooded areas). On the other hand, it should be
noted that the coherence value on flooded areas is low even
if they have been covered by water at any time between the
first and the second sensor pass, but they are not covered at
the exact time of any of the two acquisitions. This aspect
could be a drawback when following the evolution of the
flood dynamics, but it can be overcome when the coherence
information is suitably merged with other kinds of data. Also,
in this case, the parameters {µCγ ,ΣCγ} of the multivariate
Gaussian approximating each representative data type have
been automatically assigned by the K-means algorithm. Various
tests led to an optimal number of clusters Kγ = 8, which gives
a reliable representation of the analyzed scene, showing several
distinguishable behaviors. Different temporal trends have been
investigated. In particular, we are interested in clusters showing
either a significant reduction or an increase of coherence values
during the flood event [see Fig. 6(c)]. The former [blue, green,
and red coherence time series in Fig. 6(c)] are the most common
ones because they are potentially associated with the flood
event, so we assign to them a high value of P (F |Cγ) = 0.9.
The latter (orange series) can be found in the presence of double
bounce effects: this may occur when water lying below vertical
structures is found in both the InSAR sensor passes, as in the
case, e.g., of mangroves on wetlands [46], in urban areas [47],
or in vegetated fields when the incoming e.m. waves have a
sufficient level of penetration beneath the canopy. We found
some evidence of the presence of such phenomena in our data
and thus assigned P (F |Cγ) = 0.5 to such cluster. Conversely,
very low probabilities P (F |Cγ) = 0.1 are given to the other
clusters characterized by either constantly high or constantly
low coherence values.

We underline that the InSAR coherence information seems
to be particularly useful to complement intensity data, par-
ticularly in the analysis of areas showing an increased value
of backscattering signal during the flood. As previously men-
tioned, we have found that almost 43% of the total analyzed
pixels show an increase in their backscatter intensity value
during the flood event, so they could be potentially interested
by a double bounce effect. By considering also the InSAR
coherence information, we found that only about one-third of
these points (corresponding to about 13% of the total analyzed
pixels) exhibit also a significant change in the coherence value.
In this way, a useful reduction of false alarms can be obtained.

C. Flood Map Production and Evaluation

Two different flood maps have been produced by applying
(1), reporting the probability values of inundation of each pixel

Fig. 7. Flood maps produced by the BN method for (a) the December 2 and
(b) the December 3 event, respectively, with the GT area overlapped.

in the analyzed area on December 2 and 3, respectively. As
previously mentioned, the conditional probability p(F |t, d) has
been modeled as a sigmoid function [see (3)], where the para-
meters have been set respectively equal to A = 0.9, B = 1.1,
and C = −0.4 for December 2 and to A = 0.2, B = 0.3, and
C = 2 for December 3. These values were obtained through a
trial-and-error procedure, taking into account some information
about the event evolution (see the Appendix).

The flood maps, depicted in Fig. 7, have been obtained by ap-
plying a threshold of 0.5 to each final p(F = flood|i = i∗, γ =
γ∗, t = t∗, d = d∗) map. Overall, the probability map depicting
the flood extension on December 2 reports large areas having
high values of probability, mainly localized along the Bradano
river, and in good agreement with the information about the
flood event, confirming that it was in a crucial phase during

https://www.researchgate.net/publication/228618674_Multi-temporal_monitoring_of_wetland_levels_in_the_Florida_Everglades_using_interferometric_synthetic_aperture_radar_InSAR?el=1_x_8&enrichId=rgreq-1ec359f9-cb8a-42a2-93bd-5b869ba4feca&enrichSource=Y292ZXJQYWdlOzI5NzcyNTYxOTtBUzozMzg1Njg3NDE0NDE1MzZAMTQ1NzczMjQ4NjQ5NQ==
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Fig. 8. ROC curves obtained by comparing the probability maps with GT for
December 2 and 3. AUC values are 0.77 and 0.73, respectively.

this day. In particular, the BN framework allows to reduce false
alarms and missed identifications by performing data fusion.
In fact, considering again the pixels exhibiting high values of
backscattering intensity (43% of pixels in the analyzed scene),
we observed that, by adding both coherence information and
ancillary information, they are reduced to only 5%. On the
other hand, some areas that we know were flooded but that
exhibited high values of backscattering intensity show high
values of posterior probability, indicating that the data fusion
performed through the BN framework allows to overcome the
missed identification which would be obtained by using only
one data source. The probability map concerning the flood
extension on the following day shows a remarkable reduction of
inundated areas, again in agreement with the information about
the considered event that was almost concluded on December 3.

The two probabilistic flood maps have been compared with
the available reference data, described in Section III-C. The
overall accuracies, obtained in correspondence of a probability
threshold value equal to 0.5, are respectively equal to 74% and
88% for December 2 and 3. The flood and no-flood instances
are very unbalanced on the maps (the extension of the flooded
area is relatively small with respect to the analyzed area), so
the true positive rate (TPR) and false positive rate (FPR) values
are also considered to give more objective evaluations. They are
defined as

TPR =
TP

TP + FN

FPR =
FP

FP + TN

where TP is the number of true positives, i.e., the actual
flood data that are correctly classified, FP is the number of
false positives, i.e., negative data classified as positive, TN
is the number of true negatives, i.e., the actual no-flood data
that are correctly classified, and FN is the number of false
negatives, i.e., positive data classified as negative. In Fig. 8, the
corresponding receiver operator characteristic (ROC) curves
are reported: a relative agreement with the reference maps has
been obtained, with area under the curve (AUC) values for the
December 2 map and for the December 3 map equal to 0.77
and 0.73, respectively. The best overall accuracies, obtained by

TABLE III
COMPARISON BETWEEN PROBABILITY MAPS AND GT

varying the probability threshold values, are respectively equal
to 85% and 89% for December 2 and 3. However, the available
reference data are not temporally coincident with the available
images and, thus, with the probability maps, so other qualitative
and quantitative considerations can be put forward through
comparisons with the GT map. In particular, we focus on
the individual polygons delimiting fields with uniform labels,
assigned during the photointerpretation activity leading to the
GT map. Considering the GT fields labeled as “1,” i.e., the
fields that were not flooded on December 4 and 5 but could
be flooded before those dates, we report, in the first row of
Table III, the number of pixels, included within each of these
fields, showing a posterior probability value greater than 0.5 in
each of the two flood maps produced. We know that these areas
have been interested by flood before December 4, and from
this comparison, we can deduce that the phenomenon concerns
principally December 2, while in the following day, the water
in these fields has likely been absorbed. This is again consistent
with the known temporal evolution of the considered event.

In Fig. 9, the GT polygonal fields labeled as “1”in (a), and
labeled as “2” and “3” in (b) (see also Fig. 5), are shown:
the color of each field represents the percentage of pixels,
belonging to that field, with posterior probability values greater
than 0.5, computed for December 2. It is interesting to note that
there are many areas having more than 80% of pixels with a
probability value greater than 0.5 (reddish colors). In particular,
these areas are located close to the river, while areas far from the
river have lower values (orange and yellow fields). This is true
for both the areas labeled as “1” (in panel a) and those labeled
as “2” and “3” (in panel b) in the GT map, indicating that,
close to the river banks, the inundation had already begun on
December 2. In Fig. 10, the percentage of pixels with posterior
probability greater than 0.5, belonging to fields labeled as “1”
(a) and labeled as “2” and “3” (b) in the GT map, computed
for December 3, are reported. In this case, only a few pixels
are above the threshold in fields labeled as “1,” as shown by
their yellow color, while the water is also persistent in these
areas, which appear as flooded on December 4 and 5. Finally,
we have evaluated the probability map on December 3 also in
the following manner: we have considered only the points in
the fields labeled as “2” and “3” that exhibit p(F ) > 0.9 in the
map computed for December 2. These pixels are considered as
reference data for the flood instance. We have observed that
71% of them have a posterior probability value p ≥ 0.5 in the
map computed for December 3.

V. CONCLUSION

We have shown an application of a BN performing a data
fusion approach of SAR intensity imagery, InSAR coherence,
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Fig. 9. Percentage of pixels in each field labeled as 1 in (a) and as 2 or 3 in (b),
having p >= 0.5 in the map computed on December 2.

and ancillary data to detect flooded areas. Multitemporal SAR
intensity and InSAR coherence data have been independently
segmented, identifying relevant pixel clusters exhibiting homo-
geneous scattering/coherence classes. Subsequently, data have
been combined within the Bayesian framework by assigning
a priori flood probabilities to individual cluster centroids, and
adding some ancillary information, such as the distance from
the river course and a GFI.

Experimental results show good capabilities of identification
of a large area interested by theflood phenomenon,partially over-
coming the obstacle constituted by the presence of scattering/
coherence classes corresponding to different land cover types,
which respond differently to the presence of water and to
inundation evolution. In particular, our BN-based data fusion
approach allows to both mitigate the false alarms and to cor-
rectly identify flooded areas in events characterized by complex
land cover ground conditions and time evolution.

In conclusion, BNs appear to be a powerful tool to perform
data fusion in the analysis of complex real-world systems, such
as natural hazard detection. Further studies will be conducted
by considering the introduction of other variables, such as
imagery by optical sensors or other ancillary information. In
this respect, another advantage of the BN representation could
be exploited, i.e., its modularity. In fact, depending on the inde-
pendence relations between new and old variables, some local

Fig. 10. Percentage of pixels in each field labeled as 1 in (a) and as 2 or 3 in
(b), having p >= 0.5 in the map computed on December 3.

probability models could be reused, and only some conditional
probability terms would need to be inserted in the computation,
without rewriting the whole joint probability. Furthermore, the
proposed methodology exhibits the great advantage that the
analysis of conditionally independent variables (which is, at
present, the most time-consuming step) can be performed in
parallel, thus improving its potential applicability to near-real-
time postevent mapping purposes.

APPENDIX

ANCILLARY DATA PARAMETERS

The conditional probability function p(F |t, d) has been mod-
eled as a sigmoid, which is generally written as a function of
two free parameters, µ and σ

f(y) =
1

1 + exp [−σ · (y − µ)]
(4)

where µ is the y value corresponding to f(y) = 0.5 and σ is
the steepness of the curve. In our case, p(F |t, d) is a function
of two independent variables [see (3)], and three parameters,
denoted by A, B, and C, have been considered to properly
take into account each contribution. This particular form of the
a priori probability function, as well as its parametrization, is
not mandatory for the success of the proposed methodology,
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Fig. 11. (a) Ancillary data sigmoid function and data histogram for
December 2, 2013. (b) Same as (a) for December 3, 2013. (c) Ancillary data
map for December 2, 2013. (d) Same as (c) for December 3, 2013.

and other equivalent forms could be used. In this appendix, we
illustrate the reasoning behind the choice of the parameters used
in the modeling.

First of all, in order to simplify the parameter setting, the two
variables, t, i.e., the GFI, and the distance from the river course,
d, have been combined into a single variable y = t − k · d,
which can be interpreted as a “modified” Euclidean distance,
modulated by the index t, through a weight factor k which
also serves as a normalization constant to bring both variables
within a common interval. Therefore, comparing (4) to (3), the
following relations hold:

At − Bd + C = A

(
y +

C

A

)
= σ(y − µ) (5)

with A = σ, B = kA, and C = µA. The k, σ, and µ have
been set by considering information about the considered event,
and the A, B, and C values are then computed by using the
previous relations. In particular, for December 2, we know that
the flood was in a crucial phase and was concentrated near
the river (about 500 m around the banks), while farther than
5 km, only areas with high values of t could be inundated for
rain accumulation (i.e., these areas had not been reached by
floodwaters yet). For these reasons, k = 1.2 has been first set
in order to give a slightly greater weight to the d variable with
respect to t. Subsequently, the y variable has been considered
[see Fig. 11(a)], and the information about the event has been
conveyed into the other variables in the following way:

1) µ = −0.35, by considering that, in this way, values
p(F |t, d) > 0.5 are assigned to a terrain belt around the
river, wide about 500 m;

2) σ = 0.9, which corresponds to setting p(F |t, d) ≃ 0 on
areas farther than about 5 km from the river.

These positions, together with k = 1.2, give the A, B, and C
values reported in Section IV and the ancillary data map de-
picted in Fig. 11(c). Conversely, on December 3, the flood event
was in a decreasing phase, and the water was flowing away from
the river, mostly concentrated in areas where it persisted for
accumulation. For this reason, k = 1.5 has been set in order to
give a slightly greater weight to areas corresponding to greater
values of the d variable. Successively, by considering the y
variable distribution [see Fig. 11(b)], the following values have
been set:

1) σ = 0.2, in order to expand the function steepness and
assign to the ancillary information a lower weight with
respect to the imagery information;

2) µ = 10, which corresponds to setting p(F |t, d) = 0.5 on
areas with great accumulation.

These positions give the A, B, and C values reported in
Section IV and the ancillary data map depicted in Fig. 11(d).
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