192 research outputs found

    Cell Death Signaling and Anticancer Therapy

    Get PDF
    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents

    Necrosis: Linking the Inflammasome to Inflammation

    Get PDF
    International audienceIn this issue of Cell Reports, Cullen et al. demonstrate that the release of mature interleukin-1β relies on necrotic plasma membrane permeabilization. Thus, caspases may have evolved to modulate the inflammatory potential of cell death, not to execute it

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Acetyl Coenzyme A: A Central Metabolite and Second Messenger

    Get PDF
    Acetyl-coenzyme A (acetyl-CoA) is a central metabolic intermediate. The abundance of acetyl-CoA in distinct subcellular compartments reflects the general energetic state of the cell. Moreover, acetyl-CoA concentrations influence the activity or specificity of multiple enzymes, either in an allosteric manner or by altering substrate availability. Finally, by influencing the acetylation profile of several proteins, including histones, acetyl-CoA controls key cellular processes, including energy metabolism, mitosis, and autophagy, both directly and via the epigenetic regulation of gene expression. Thus, acetyl-CoA determines the balance between cellular catabolism and anabolism by simultaneously operating as a metabolic intermediate and as a second messenger

    Mitochondrial control of cell death induced by hyperosmotic stress

    Get PDF
    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-XL sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control

    DNA Damage in Stem Cells

    Get PDF
    Both embryonic and adult stem cells are endowed with a superior capacity to prevent the accumulation of genetic lesions, repair them, or avoid their propagation to daughter cells, which would be particularly detri- mental to the whole organism. Inducible pluripotent stem cells also display a robust DNA damage response, but the stability of their genome is often conditioned by the mutational history of the cell population of origin, which constitutes an obstacle to clinical applications. Cancer stem cells are particularly tolerant to DNA dam- age and fail to undergo senescence or regulated cell death upon accumulation of genetic lesions. Such a resistance contributes to the genetic drift of evolving tumors as well as to their limited sensitivity to chemo- and radiotherapy. Here, we discuss the pathophysiological and therapeutic implications of the molecular pathways through which stem cells cope with DNA damage

    Trial watch: Chemotherapy with immunogenic cell death inducers

    Get PDF
    The long-established notion that apoptosis would be immunologically silent, and hence it would go unnoticed by the immune system, if not tolerogenic, and hence it would actively suppress immune responses, has recently been revisited. In some instances, indeed, cancer cells undergo apoptosis while emitting a spatiotemporally-defined combination of signals that renders them capable of eliciting a long-term protective antitumor immune response. Importantly, only a few anticancer agents can stimulate such an immunogenic cell death. These include cyclophosphamide, doxorubicin and oxaliplatin, which are currently approved by FDA for the treatment of multiple hematologic and solid malignancies, as well as mitoxantrone, which is being used in cancer therapy and against multiple sclerosis. In this Trial Watch, we will review and discuss the progress of recent (initiated after January 2008) clinical trials evaluating the off-label use of cyclophosphamide, doxorubicin, oxaliplatin and mitoxantrone
    corecore