16 research outputs found

    Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test

    No full text
    BACKGROUND: Long QT syndrome (LQTS) is a potentially lethal, highly treatable cardiac channelopathy for which genetic testing has matured from discovery to translation and now clinical implementation. OBJECTIVES: Here we examine the spectrum and prevalence of mutations found in the first 2,500 unrelated cases referred for the FAMILION LQTS clinical genetic test. METHODS: Retrospective analysis of the first 2,500 cases (1,515 female patients, average age at testing 23 +/- 17 years, range 0 to 90 years) scanned for mutations in 5 of the LQTS-susceptibility genes: KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6). RESULTS: Overall, 903 referral cases (36%) hosted a possible LQTS-causing mutation that was absent in >2,600 reference alleles; 821 (91%) of the mutation-positive cases had single genotypes, whereas the remaining 82 patients (9%) had >1 mutation in > or =1 gene, including 52 cases that were compound heterozygous with mutations in >1 gene. Of the 562 distinct mutations, 394 (70%) were missense, 428 (76%) were seen once, and 336 (60%) are novel, including 92 of 199 in KCNQ1, 159 of 226 in KCNH2, and 70 of 110 in SCN5A. CONCLUSION: This cohort increases the publicly available compendium of putative LQTS-associated mutations by >50%, and approximately one-third of the most recently detected mutations continue to be novel. Although control population data suggest that the great majority of these mutations are pathogenic, expert interpretation of genetic test results will remain critical for effective clinical use of LQTS genetic test result

    A mutation in the beta 3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype

    No full text
    Brugada syndrome, characterized by ST-segment elevation in the right precordial ECG leads and the development of life-threatening ventricular arrhythmias, has been associated with mutations in 6 different genes. We identify and characterize a mutation in a new gene. A 64-year-old white male displayed a type 1 ST-segment elevation in V1 and V2 during procainamide challenge. Polymerase chain reaction-based direct sequencing was performed using a candidate gene approach. A missense mutation (L10P) was detected in exon 1 of SCN3B, the beta 3 subunit of the cardiac sodium channel, but not in any other gene known to be associated with Brugada syndrome or in 296 controls. Wild-type (WT) and mutant genes were expressed in TSA201 cells and studied using whole-cell patch-clamp techniques. Coexpression of SCN5A/WT+SCN1B/WT+SCN3B/L10P resulted in an 82.6% decrease in peak sodium current density, accelerated inactivation, slowed reactivation, and a -9.6-mV shift of half-inactivation voltage compared with SCN5A/WT+SCN1B/WT+SCN3B/WT. Confocal microscopy revealed that SCN5A/WT channels tagged with green fluorescent protein are localized to the cell surface when coexpressed with WT SCN1B and SCN3B but remain trapped in intracellular organelles when coexpressed with SCN1B/WT and SCN3B/L10P. Western blot analysis confirmed the presence of Na(V)beta 3 in human ventricular myocardium. Our results provide support for the hypothesis that mutations in SCN3B can lead to loss of transport and functional expression of the hNa(v)1.5 protein, leading to reduction in sodium channel current and clinical manifestation of a Brugada phenotyp

    Distinguishing Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia-Associated Mutations From Background Genetic Noise

    Get PDF
    ObjectivesThe aims of this study were to determine the spectrum and prevalence of “background genetic noise” in the arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC) genetic test and to determine genetic associations that can guide the interpretation of a positive test result.BackgroundARVC is a potentially lethal genetic cardiovascular disorder characterized by myocyte loss and fibrofatty tissue replacement of the right ventricle. Genetic variation among the ARVC susceptibility genes has not been systematically examined, and little is known about the background noise associated with the ARVC genetic test.MethodsUsing direct deoxyribonucleic acid sequencing, the coding exons/splice junctions of PKP2, DSP, DSG2, DSC2, and TMEM43 were genotyped for 93 probands diagnosed with ARVC from the Netherlands and 427 ostensibly healthy controls of various ethnicities. Eighty-two additional ARVC cases were obtained from published reports, and additional mutations were included from the ARVD/C Genetic Variants Database.ResultsThe overall yield of mutations among ARVC cases was 58% versus 16% in controls. Radical mutations were hosted by 0.5% of control individuals versus 43% of ARVC cases, while 16% of controls hosted missense mutations versus a similar 21% of ARVC cases. Relative to controls, mutations in cases occurred more frequently in non-Caucasians, localized to the N-terminal regions of DSP and DSG2, and localized to highly conserved residues within PKP2 and DSG2.ConclusionsThis study is the first to comprehensively evaluate genetic variation in healthy controls for the ARVC susceptibility genes. Radical mutations are high-probability ARVC-associated mutations, whereas rare missense mutations should be interpreted in the context of race and ethnicity, mutation location, and sequence conservation
    corecore