13,933 research outputs found

    Effective time-reversal symmetry breaking in the spin relaxation in a graphene quantum dot

    Full text link
    We study the relaxation of a single electron spin in a circular gate-tunbable quantum dot in gapped graphene. Direct coupling of the electron spin to out-of-plane phonons via the intrinsic spin-orbit coupling leads to a relaxation time T_1 which is independent of the B-field at low fields. We also find that Rashba spin-orbit induced admixture of opposite spin states in combination with the emission of in-plane phonons provides various further relaxation channels via deformation potential and bond-length change. In the absence of valley mixing, spin relaxation takes place within each valley separately and thus time-reversal symmetry is effectively broken, thus inhibiting the van Vleck cancellation at B=0 known from GaAs quantum dots. Both the absence of the van Vleck cancellation as well as the out-of-plane phonons lead to a behavior of the spin relaxation rate at low magnetic fields which is markedly different from the known results for GaAs. For low B-fields, we find that the rate is constant in B and then crosses over to ~B^2 or ~B^4 at higher fields.Comment: 5 pages, 2 figures, 1 tabl

    Spin-valley blockade in carbon nanotube double quantum dots

    Full text link
    We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in semiconducting carbon nanotubes. In our model we take into account the following characteristic features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels, (ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-valley blockade can be lifted in the presence of short-range disorder, which induces two independent random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit interaction, we identify a parameter regime where the current as the function of an applied axial magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude, in agreement with recent experiments.Comment: 15 pages, 6 figures, 2 tables; v2: published versio

    Justification of Leading Order Quasicontinuum Approximations of Strongly Nonlinear Lattices

    Full text link
    We consider the leading order quasicontinuum limits of a one-dimensional granular medium governed by the Hertz contact law under precompression. The approximate model which is derived in this limit is justified by establishing asymptotic bounds for the error with the help of energy estimates. The continuum model predicts the development of shock waves, which are also studied in the full system with the aid of numerical simulations. We also show that existing results concerning the Nonlinear Schrodinger (NLS) and Korteweg de-Vries (KdV) approximation of FPU models apply directly to a precompressed granular medium in the weakly nonlinear regime

    Quantum gates between capacitively coupled double quantum dot two-spin qubits

    Full text link
    We study the two-qubit controlled-not gate operating on qubits encoded in the spin state of a pair of electrons in a double quantum dot. We assume that the electrons can tunnel between the two quantum dots encoding a single qubit, while tunneling between the quantum dots that belong to different qubits is forbidden. Therefore, the two qubits interact exclusively through the direct Coulomb repulsion of the electrons. We find that entangling two-qubit gates can be performed by the electrical biasing of quantum dots and/or tuning of the tunneling matrix elements between the quantum dots within the qubits. The entangling interaction can be controlled by tuning the bias through the resonance between the singly-occupied and doubly-occupied singlet ground states of a double quantum dot.Comment: 12 pages, 7 figure

    Background Estimation in a Gravitational Wave Experiment

    Get PDF
    The problem to estimate the background due to accidental coincidences in the search for coincidences in gravitational wave experiments is discussed. The use of delayed coincidences obtained by orderly shifting the event times of one of the two detectors is shown to be the most correctComment: Latex file. 6 pages, 3 figures. Submitted to the proceeding of the 3 GWDAW workshop (Rome, dic 1999) (International journal of Modern physics D

    Comment on "Quantum discord through the generalized entropy in bipartite quantum states"

    Full text link
    In [X.-W. Hou, Z.-P. Huang, S. Chen, Eur. Phys. J. D 68, 1 (2014)], Hou et al. present, using Tsallis' entropy, possible generalizations of the quantum discord measure, finding original results. As for the mutual informations and discord, we show here that these two types of quantifiers can take negative values. In the two qubits instance we further determine in which regions they are non-negative. Additionally, we study alternative generalizations on the basis of R\'enyi entropies.Comment: 5 pages, 4 figure

    Lower bound for electron spin entanglement from beamsplitter current correlations

    Full text link
    We determine a lower bound for the entanglement of pairs of electron spins injected into a mesoscopic conductor. The bound can be expressed in terms of experimentally accessible quantities, the zero-frequency current correlators (shot noise power or cross-correlators) after transmission through an electronic beam splitter. The effect of spin relaxation (T_1 processes) and decoherence (T_2 processes) during the ballistic coherent transmission of the carriers in the wires is taken into account within Bloch theory. The presence of a variable inhomogeneous magnetic field allows the determination of a useful lower bound for the entanglement of arbitrary entangled states. The decrease in entanglement due to thermally mixed states is studied. Both the entanglement of the output of a source (entangler) and the relaxation (T_1) and decoherence (T_2) times can be determined.Comment: 4 pages, 3 figure
    • 

    corecore