5,092 research outputs found

    Properties of bio-oil and bio-char produced by sugar cane bagasse pyrolysis in a stainless steel tubular reactor

    Get PDF
    In this study, compositional analysis of the products obtained by thermal degradation of sugar cane bagasse at various pyrolysis temperatures (300, 350, 400, 450, 500, 550, 600, 650, 700, 750 and 800 °C) and heating rate (5, 10, 20 and 50 °C/min) was studied. Sugar cane bagasse was pyrolyzed in a stainless steel tubular reactor. The aim of this work was to experimentally investigate how the temperature and heating rate affects liquid and char product yields via pyrolysis and to determine optimal condition to have a better yield of these products. Liquid product (bio-oil) obtained under the most suitable conditions were characterized by elemental analysis, FT-IR, C-NMR and HNMR. In addition, column chromatography was employed to determine the aliphatic fraction (Hexane Eluate); gas chromatography and FT-IR were achieved on aliphatic fractions. For char product (bio-char), the elemental chemical composition and yield of the char were determined. The results of our work showed that the amount of liquid product (bio-oil) from pyrolysis of sugar cane bagasse increases with increasing the final temperature and decreases with increasing the heating rate. The highest yield of liquid product is obtained from the samples at 550 °C and at the heating rate of 5°C/min, the maximal average yield achieved almost 32.80 wt%. The yield of char generally decreases with increasing the temperature, the char yield passes from 39.7 wt% to 21 wt% at the heating rate of 5°C/min and from 32 wt% to 17.2 wt% at the heating rate of 50 °C/min at the same range of temperature (300–800 °C). The analysis of bio-oil showed the presence of an aliphatic character and that it is possible to obtain liquid products similar to petroleum from sugar cane bagasse waste. The solid products (bio-char) obtained in the presence of nitrogen (N2) contain a very important percentage of carbon and high higher heating values (HHV)

    A review on thermochemical treatment of biomass: Pyrolysis of olive mill wastes in comparison with other types of biomass

    Get PDF
    Each year, a great quantity of olive oil is produced by the unit mill of trituration. This activity generates two by-products named olive mill wastewater and olive mill solid waste representing major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat wastes to produce valuable oil, char and gas products. The major important aim of waste pyrolysis is to produce liquid fuel or bio-oil, which is easy to store, transport and can be an alternative to energy source. The key influence on the product yield is the type of biomass feedstock and operating parameters (especially temperature and heating rate). It is important to investigate the effect of variables on response yield and impulse about their optimization. This study reviews operating variable from existing literature on olive mill wastes (OMSW and OMWW) in comparison with various types of biomass. The major operating variables include type of feedstock, final temperature of pyrolysis, heating rate and particle size. The scale of this paper is to analyse the influence of operating parameters on production of pyrolysis bio-oil, char and gaseous products

    Optimized Perturbation Theory for Wave Functions of Quantum Systems

    Full text link
    The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings.Comment: 11 pages, RevTeX, three ps figure

    Universal amplitude ratios from numerical studies of the three-dimensional O(2) model

    Full text link
    We investigate the three-dimensional O(2) model near the critical point by Monte Carlo simulations and calculate the major universal amplitude ratios of the model. The ratio U_0=A+/A- is determined directly from the specific heat data at zero magnetic field. The data do not, however, allow to extract an accurate estimate for alpha. Instead, we establish a strong correlation of U_0 with the value of alpha used in the fit. This numerical alpha-dependence is given by A+/A- = 1 -4.20(5) alpha + O(alpha^2). For the special alpha-values used in other calculations we find full agreement with the corresponding ratio values, e. g. that of the shuttle experiment with liquid helium. On the critical isochore we obtain the ratio xi+/xi-_T=0.293(9), and on the critical line the ratio xi_T^c/xi_L^c=1.957(10) for the amplitudes of the transverse and longitudinal correlation lengths. These two ratios are independent of the used alpha or nu-values.Comment: 34 pages, 19 Ps-figures, Latex2e, revised version, to be published in J. Phys.

    Crossover scaling from classical to nonclassical critical behavior

    Full text link
    We study the crossover between classical and nonclassical critical behaviors. The critical crossover limit is driven by the Ginzburg number G. The corresponding scaling functions are universal with respect to any possible microscopic mechanism which can vary G, such as changing the range or the strength of the interactions. The critical crossover describes the unique flow from the unstable Gaussian to the stable nonclassical fixed point. The scaling functions are related to the continuum renormalization-group functions. We show these features explicitly in the large-N limit of the O(N) phi^4 model. We also show that the effective susceptibility exponent is nonmonotonic in the low-temperature phase of the three-dimensional Ising model.Comment: 5 pages, final version to appear in Phys. Rev.

    Application of Minimal Subtraction Renormalization to Crossover Behavior near the 3^3He Liquid-Vapor Critical Point

    Full text link
    Parametric expressions are used to calculate the isothermal susceptibility, specific heat, order parameter, and correlation length along the critical isochore and coexistence curve from the asymptotic region to crossover region. These expressions are based on the minimal-subtraction renormalization scheme within the ϕ4\phi^4 model. Using two adjustable parameters in these expressions, we fit the theory globally to recently obtained experimental measurements of isothermal susceptibility and specific heat along the critical isochore and coexistence curve, and early measurements of coexistence curve and light scattering intensity along the critical isochore of 3^3He near its liquid-vapor critical point. The theory provides good agreement with these experimental measurements within the reduced temperature range t2×102|t| \le 2\times 10^{-2}

    Scaling behavior of self-avoiding walks on percolation clusters

    Full text link
    The scaling behavior of self-avoiding walks (SAWs) on the backbone of percolation clusters in two, three and four dimensions is studied by Monte Carlo simulations. We apply the pruned-enriched Rosenbluth chain-growth method (PERM). Our numerical results bring about the estimates of critical exponents, governing the scaling laws of disorder averages of the end-to-end distance of SAW configurations. The effects of finite-size scaling are discussed as well.Comment: 6 page

    Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: Existence

    Full text link
    We prove existence and multiplicity results for finite energy solutions to the nonlinear elliptic equation u+V(x)u=g(x,u)in ΩRN, N3, -\triangle u+V\left( \left| x\right| \right) u=g\left( \left| x\right| ,u\right) \quad \textrm{in }\Omega \subseteq \mathbb{R}^{N},\ N\geq 3, where Ω\Omega is a radial domain (bounded or unbounded) and uu satisfies u=0u=0 on Ω\partial \Omega if ΩRN\Omega \neq \mathbb{R}^{N} and u0u\rightarrow 0 as x\left| x\right| \rightarrow \infty if Ω\Omega is unbounded. The potential VV may be vanishing or unbounded at zero or at infinity and the nonlinearity gg may be superlinear or sublinear. If gg is sublinear, the case with g(,0)0g\left( \left| \cdot \right| ,0\right) \neq 0 is also considered.Comment: 29 pages, 8 figure

    Field-theory results for three-dimensional transitions with complex symmetries

    Full text link
    We discuss several examples of three-dimensional critical phenomena that can be described by Landau-Ginzburg-Wilson ϕ4\phi^4 theories. We present an overview of field-theoretical results obtained from the analysis of high-order perturbative series in the frameworks of the ϵ\epsilon and of the fixed-dimension d=3 expansions. In particular, we discuss the stability of the O(N)-symmetric fixed point in a generic N-component theory, the critical behaviors of randomly dilute Ising-like systems and frustrated spin systems with noncollinear order, the multicritical behavior arising from the competition of two distinct types of ordering with symmetry O(n1n_1) and O(n2n_2) respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200
    corecore