33 research outputs found

    Development of the urogenital system is regulated via the 3 ' UTR of GDNF

    Get PDF
    Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cellline derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf(hyper) mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3' UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.Peer reviewe

    Simple 3D culture of dissociated kidney mesenchyme mimics nephron progenitor niche and facilitates nephrogenesis Wnt-independently

    Get PDF
    Kidney mesenchyme (KM) and nephron progenitors (NPs) depend on WNT activity, and their culture in vitro requires extensive repertoire of recombinant proteins and chemicals. Here we established a robust, simple culture of mouse KM using a combination of 3D Matrigel and growth media supplemented with Fibroblast Growth Factor 2 (FGF2) and Src inhibitor PP2. This allows dissociated KM to spontaneously self-organize into spheres. To reassess the requirement of WNT activity in KM self-organization and NPs maintenance, cells were cultured with short pulse of high-dose GSK3 beta inhibitor BIO, on a constant low-dose or without BIO. Robust proliferation at 48 hours and differentiation at 1 week were observed in cultures with high BIO pulse. Importantly, dissociated KM cultured without BIO, similarly to that exposed to constant low dose of BIO, maintained NPs up to one week and spontaneously differentiated into nephron tubules at 3 weeks of culture. Our results show that KM is maintained and induced to differentiate in a simple culture system. They also imply that GSK3 beta/WNT-independent pathways contribute to the maintenance and induction of mouse KM. The robust and easy 3D culture enables further characterization of NPs, and may facilitate disease modeling when applied to human cells.Peer reviewe

    Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF

    Get PDF
    Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification.Peer reviewe

    Development of the urogenital system is regulated via the 3 ' UTR of GDNF

    Get PDF
    Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cellline derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf(hyper) mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3' UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies

    Genetic regulators of ventral midbrain gene expression and nigrostriatal circuit integrity

    Get PDF
    Complex traits are a fundamental feature of diverse organisms. Understanding the genetic architecture of a complex trait is arduous but paramount because heterogeneity is prevalent in populations and often disease-related. Genome-wide association studies have identified many genetic variants associated with complex human traits, but they can only explain a small portion of the expected heritability. This is partially because human genomes are highly diverse with large inter-personal difference. It has been estimated that every human differs from each other by at least 5 million variants. Moreover, many common variants with small effect can contribute to complex traits, but they cannot survive from stringent statistical cutoff given the currently available sample size. Mice are an ideal substitute. They are maintained in a controlled condition to minimize the variation introduced by environment. Each mouse of an inbred strain is genetically identical, but different strains bear innate genetic heterogeneity between each other, mimicking human diversity. Hence, in this work we used inbred mouse strains to study the genetic variation of complex traits. We focused on ventral midbrain, the brain region controlling motor functions and behaviors such as anxiety and fear learning that differ profoundly between inbred mouse strains. Such phenotypic diversity is directed by differences in gene expression that is controlled by cis- and trans-acting regulatory variants. Profound understanding on the genetic variation of ventral midbrain and its related phenotypic differences could pave the way to apprehend the whole genetic makeup of its associated disease phenotypes such as Parkinson’s disease and schizophrenia. Therefore, we set out to investigate the cis- and trans-acting variants affecting mouse ventral midbrain by coupling tissue-level and cell type-specific transcriptomic and epigenomic data. Transcriptomic comparison on ventral midbrains of C57BL/6J, A/J and DBA/2J, three inbred strains segregated by ~ 6 million genetic variants, pinpointed PTTG1 was the only transcription factor significantly altered at transcriptional level between the three strains. Pttg1 ablation on C57BL/6J background led to midbrain transcriptome to shift closer to A/J and DBA/2J during aging, suggesting Pttg1 is a novel regulator for ventral midbrain transcriptome. As ventral midbrain is a mixture of cells, tissue level transcriptome cannot always reveal cell type-specific regulatory variation. Therefore, we set out to generate single nuclei chromatin accessibility profiles on ¬ventral midbrains of C57BL/6J and A/J, providing a rich resource to study the transcriptional control of cellular identity and genetic diversity in this brain region. Data integration with existing single cell transcriptomes predicted the key transcription factors controlling cell identity. Putative regulatory variants showed differential accessibility across cell types, indicating genetic variation can direct cell type-specific gene expression. Comparing chromatin accessibility between mice revealed potential trans-acting variation that can affect strain-specific gene expression in a given cell type. The diverse transcriptome profiles in ventral midbrain can lead to phenotypic variation. Nigrostriatal circuit, bridging from ventral midbrain to dorsal striatum by dopaminergic neurons, is an important pathway controlling motor activity. To search for phenotypes related to dopaminergic neurons, we measured the dopamine concentration in dorsal striatum of eight inbred mouse strains. Interestingly, dopamine levels were varied among stains, suggesting it is a complex trait linked to genetic variation in ventral midbrain. To understand the genetic variation contributing to dopamine level differences, we conducted quantitative trait locus (QTL) mapping with 32 CC strains and found a QTL significantly associated with the trait on chromosome X. As expression changes are likely to be underlying the phenotypic variation, we leveraged our previous transcriptomic data from C57BL/6J and A/J to search for genes differentially expressed in the QTL locus. Col4a6 is the most likely QTL gene because of its 9-fold expression difference between C57BL/6J and A/J. Indeed, COL4A6 has been shown to regulate axogenesis during brain development. This coincides with our observation that A/J had less axon branching in dorsal striatum than C57BL/6J, prompting us to propose that Col4a6 can regulate the axon formation of dopaminergic neurons in embryonic stages. Our study provides a comprehensive overview on cis- and trans-regulatory variants affecting expression phenotypes in ventral midbrain, and how they could possibly introduce phenotypic difference associated with this brain region. In addition, our single nuclei chromatin landscapes of ventral midbrain are a rich resource for analysis on gene regulation and cell identity. Our work paves the way to apprehend full genetic makeup on the gene expression control of ventral midbrain, the result of which is important to understand the genetic background of midbrain associated phenotypes

    Concentrations and potential health hazards of organochlorine pesticides in (shallow) groundwater of Taihu Lake region, China

    No full text
    A total of 27 shallow groundwater samples were collected from the Taihu Lake region (TLR), to determine the concentrations of 14 organochlorine pesticide (OCP) species, identify their possible sources, and estimate health risk of drinking the shallow groundwater. All OCP species occurred in the shallow groundwater of TLR with high detection frequency except p, p'-dichlorodiphenyldichlorothane (p, p'-DDD) and p, p'-dichlorodiphenyltrichloroethane (p, p'-DDT). DDTs and hexachlorocyclohexanes (HCHs) were the dominant OCP contaminants in the shallow groundwater of TLR, and they account for 44.2% total OCPs. The low alpha-HCH/gamma-HCH ratio, high beta-HCH/(alpha + gamma)-HCH ratio and beta-HCH being the dominant HCH isomers for the majority of samples suggest that the HCHs were mainly from the historical use of lindane after a period of degradation. p, p'-DDE being the dominant DDT metabolite for all the samples indicated that the DDTs were mainly from the historical residues. Compositional analysis also suggested that there were fresh input sources of heptachlors, aldrins and endrins in addition to the historical residues. Correlation analysis indicated the hexachlorobenzene (HCB) impurity in the shallow groundwater of TLR was likely from the historical application of lindane and technical HCH (a mixture of HCH isomers that is produced by photochlorination of benzene). Carcinogenic risk values for alpha-HCH, heptachlor, heptachlor epoxide, aldrins and dieldrin in the shallow groundwater in majority area of TLR were found to be >10(-6), posing a potentially serious cancer risk to those dependant on shallow groundwater for drinking water. (C) 2013 Elsevier B.V. All rights reserved.A total of 27 shallow groundwater samples were collected from the Taihu Lake region (TLR), to determine the concentrations of 14 organochlorine pesticide (OCP) species, identify their possible sources, and estimate health risk of drinking the shallow groundwater. All OCP species occurred in the shallow groundwater of TLR with high detection frequency except p, p'-dichlorodiphenyldichlorothane (p, p'-DDD) and p, p'-dichlorodiphenyltrichloroethane (p, p'-DDT). DDTs and hexachlorocyclohexanes (HCHs) were the dominant OCP contaminants in the shallow groundwater of TLR, and they account for 44.2% total OCPs. The low alpha-HCH/gamma-HCH ratio, high beta-HCH/(alpha + gamma)-HCH ratio and beta-HCH being the dominant HCH isomers for the majority of samples suggest that the HCHs were mainly from the historical use of lindane after a period of degradation. p, p'-DDE being the dominant DDT metabolite for all the samples indicated that the DDTs were mainly from the historical residues. Compositional analysis also suggested that there were fresh input sources of heptachlors, aldrins and endrins in addition to the historical residues. Correlation analysis indicated the hexachlorobenzene (HCB) impurity in the shallow groundwater of TLR was likely from the historical application of lindane and technical HCH (a mixture of HCH isomers that is produced by photochlorination of benzene). Carcinogenic risk values for alpha-HCH, heptachlor, heptachlor epoxide, aldrins and dieldrin in the shallow groundwater in majority area of TLR were found to be >10(-6), posing a potentially serious cancer risk to those dependant on shallow groundwater for drinking water. (C) 2013 Elsevier B.V. All rights reserved

    The Effect of FATP1 on Adipocyte Differentiation in Qinchuan Beef Cattle

    No full text
    FATP1 plays an important role in the regulation of fatty acid metabolism and lipid accumulation. In this study, we investigated the patterns of FATP1 expression in various tissues obtained from calf and adult Qinchuan cattle, and in differentiating adipocytes. Next, we investigated the effect of FATP1 expression on preadipocyte differentiation in Qinchuan cattle using overexpression and interference assays. We also identified the differentially expressed genes (DEGs) and pathways associated with FATP1 overexpression/interference. Our results reveal that FATP1 was broadly expressed in heart, kidney, muscle, small intestine, large intestine, and perirenal fat tissues. While FATP1 overexpression promoted preadipocyte differentiation, fat deposition, and the expression of several genes involved in fat metabolism, FATP1 interference had the opposite effects on adipocyte differentiation. Following FATP1 overexpression and FATP1 interference in adipocytes, RNA-seq analysis was performed to identify DEGs related to fat metabolism. The DEGs identified include SLPI, STC1, SEMA6A, TNFRSF19, SLN, PTGS2, ADCYP1, FADS2, and SCD. Pathway analysis revealed that the DEGs were enriched in the PPAR signaling pathway, AMPK signal pathway, and Insulin signaling pathway. Our results provide an in-depth understanding of the function and regulation mechanism of FAPT1 in fat metabolism
    corecore