2,941 research outputs found

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Investigating people: a qualitative analysis of the search behaviours of open-source intelligence analysts

    Get PDF
    The Internet and the World Wide Web have become integral parts of the lives of many modern individuals, enabling almost instantaneous communication, sharing and broadcasting of thoughts, feelings and opinions. Much of this information is publicly facing, and as such, it can be utilised in a multitude of online investigations, ranging from employee vetting and credit checking to counter-terrorism and fraud prevention/detection. However, the search needs and behaviours of these investigators are not well documented in the literature. In order to address this gap, an in-depth qualitative study was carried out in cooperation with a leading investigation company. The research contribution is an initial identification of Open-Source Intelligence investigator search behaviours, the procedures and practices that they undertake, along with an overview of the difficulties and challenges that they encounter as part of their domain. This lays the foundation for future research in to the varied domain of Open-Source Intelligence gathering

    Information trade-offs for optical quantum communication

    Get PDF
    Recent work has precisely characterized the achievable trade-offs between three key information processing tasks---classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time-sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space / fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels.Comment: 6 pages, 2 figures, see related, longer article at arXiv:1105.011

    A 2-component μ\mu-Hunter-Saxton equation

    Full text link
    In this paper, we propose a two-component generalization of the generalized Hunter-Saxton equation obtained in \cite{BLG2008}. We will show that this equation is a bihamiltonian Euler equation, and also can be viewed as a bi-variational equation

    Symmetric M-ary phase discrimination using quantum-optical probe states

    Full text link
    We present a theoretical study of minimum error probability discrimination, using quantum- optical probe states, of M optical phase shifts situated symmetrically on the unit circle. We assume ideal lossless conditions and full freedom for implementing quantum measurements and for probe state selection, subject only to a constraint on the average energy, i.e., photon number. In particular, the probe state is allowed to have any number of signal and ancillary modes, and to be pure or mixed. Our results are based on a simple criterion that partitions the set of pure probe states into equivalence classes with the same error probability performance. Under an energy constraint, we find the explicit form of the state that minimizes the error probability. This state is an unentangled but nonclassical single-mode state. The error performance of the optimal state is compared with several standard states in quantum optics. We also show that discrimination with zero error is possible only beyond a threshold energy of (M - 1)/2. For the M = 2 case, we show that the optimum performance is readily demonstrable with current technology. While transmission loss and detector inefficiencies lead to a nonzero erasure probability, the error rate conditional on no erasure is shown to remain the same as the optimal lossless error rate.Comment: 13 pages, 10 figure

    Evolution of a barotropic shear layer into elliptical vortices

    Full text link
    When a barotropic shear layer becomes unstable, it produces the well known Kelvin-Helmholtz instability (KH). The non-linear manifestation of KH is usually in the form of spiral billows. However, a piecewise linear shear layer produces a different type of KH characterized by elliptical vortices of constant vorticity connected via thin braids. Using direct numerical simulation and contour dynamics, we show that the interaction between two counter-propagating vorticity waves is solely responsible for this KH formation. We investigate the oscillation of the vorticity wave amplitude, the rotation and nutation of the elliptical vortex, and straining of the braids. Our analysis also provides possible explanation behind the formation and evolution of elliptical vortices appearing in geophysical and astrophysical flows, e.g. meddies, Stratospheric polar vortices, Jovian vortices, Neptune's Great Dark Spot and coherent vortices in the wind belts of Uranus.Comment: 7 pages, 4 figures, Accepted in Physical Review

    Universality of collapsing two-dimensional self-avoiding trails

    Full text link
    Results of a numerically exact transfer matrix calculation for the model of Interacting Self-Avoiding Trails are presented. The results lead to the conclusion that, at the collapse transition, Self-Avoiding Trails are in the same universality class as the O(n=0) model of Blote and Nienhuis (or vertex-interacting self-avoiding walk), which has thermal exponent ν=12/23\nu=12/23, contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9 pages; 3 figure

    Synthesis of thujane

    Get PDF
    This article does not have an abstract
    • …
    corecore