8 research outputs found

    Thermometric absorption spectroscopy through active locking of microbubble resonators

    Get PDF
    We implemented a Microbubble Resonator (MBRs) as an opto-thermal transducer to reconstruct the absorption spectrum of a nanoparticle suspension through its temperature increase. The experimental configuration features the MBR as both the vial containing the suspension and the optical transducer, allowing for a sensitive ultra-compact system with a straightforward microfluidic integration. With respect to a previous publication, the active lock of the MBR resonance produced an order-of-magnitude improvement in the system performance and a smooth absorption reconstruction. Additionally, since the detection process is temperature-based, the measurement is intrinsically insensitive towards scattering spectrum, both of the particles and of the host liquid. These features make the MBR system an interesting candidate for the characterisation of extremely small samples in the context of medical diagnosis from whole biological samples, quality controls for food safety or chemical production processes, and, in general, for the measurement of absorption in opaque mediums

    Demonstration of fibrinogen-FcRn binding at acidic pH by means of Fluorescence Correlation Spectroscopy

    No full text
    The neonatal Fc receptor (FcRn) interacts with IgG and albumin at acidic pH within endosomes, thus protecting these plasma proteins from degradation. Recently, we proposed fibrinogen as a new binding partner of FcRn. This work was aimed at providing a direct demonstration of FcRn-fibrinogen binding at acidic pH by Fluorescence Correlation Spectroscopy. The increase in diffusion time between free and fibrinogen-bound FITC-labelled FcRn was assumed as the binding indicator. We observed that, at acidic pH (pH = 5.3), FcRn diffusion time shifted from 48730 \u3bcs (FITC-labelled FcRn alone) to >1200 \u3bcs (FITC-labelled FcRn added with fibrinogen). A similar trend was exhibited by albumin, a known FcRn interactor, while no significant variations in diffusion time were observed upon incubation with catalase as negative control. Our results demonstrate a binding interaction between fibrinogen, one of the most abundant plasma proteins, and FcRn, a receptor involved in the regulation of the levels of IgG and albumin. This interaction is likely responsible for fibrinogen protection from intracellular degradation and recycling in plasma. Fibrinogen is crucial not only in haemostasis but also in acute inflammatory response and in some pathological conditions. The interaction with FcRn can influence not only the levels of fibrinogen in plasma and other tissues, but also the levels of other FcRn binding partners, among which are some plasma proteins of clinical relevance

    Synthesis, Characterization, Fluorescence Properties, and DFT Modeling of Difluoroboron Biindolediketonates

    No full text
    We report a simple and efficient strategy to enhance the fluorescence of biocompatible biindole diketonates (bdks) in the visible spectrum through difluoroboronation (BF2bdks complexes). Emission spectroscopy testifies an increase in the fluorescence quantum yields from a few percent to as much as >0.7. This massive increment is essentially independent of substitutions at the indole (-H, -Cl, and -OCH3) and corresponds to a significant stabilization of the excited state with respect to non-radiative decay mechanisms: the non-radiative decay rates are reduced by as much as an order of magnitude, from 109 s−1 to 108 s−1, upon difluoroboronation. The stabilization of the excited state is large enough to enable sizeable 1O2 photosensitized production. Different time-dependent (TD) density functional theory (DFT) methods were assessed in their ability to model the electronic properties of the compounds, with TD-B3LYP-D3 providing the most accurate excitation energies. The calculations associate the first active optical transition in both the bdks and BF2bdks electronic spectra to the S0 → S1 transition, corresponding to a shift in the electronic density from the indoles to the oxygens or the O-BF2-O unit, respectively

    Synthesis, Characterization and DNA-Binding Affinity of a New Zinc(II) Bis(5-methoxy-indol-3-yl)propane-1,3-dione Complex

    No full text
    The novel zinc(II) µ-oxo-bridged-dimeric complex [Zn2(µ-O)2(BMIP)2] (BMIP = 1,3-bis(5-methoxy-1-methyl-1H-indol-3-yl)propane-1,3-dione), 1, was synthetized and fully characterized. The spectral data indicate a zincoxane molecular structure, with the BMIP ligand coordinating in its neutral form via its oxygen atoms. Structural changes in 1 in dimethylsulfoxide (DMSO) were evidenced by means of spectroscopic techniques including infrared absorption and nuclear magnetic resonance, showing DMSO entrance in the coordination sphere of the metal ion. The resulting complex [Zn2(µ-O)2(BMIP)2(DMSO)], 2, readily reacts in the presence of N-methyl-imidazole (NMI), a liquid-phase nucleoside mimic, to form [Zn2(µ-O)2(BMIP)2(NMI)], 3, through DMSO displacement. The three complexes show high thermal stability, demonstrating that 1 has high affinity for hard nucleophiles. Finally, with the aim of probing the suitability of this system as model scaffold for new potential anticancer metallodrugs, the interactions of 1 with calf thymus DNA were investigated in vitro in pseudo-physiological environment through UV-Vis absorption and fluorescence emission spectroscopy, as well as time-resolved fluorescence studies. The latter analyses revealed that [Zn2(µ-O)2(BMIP)2(DMSO)] binds to DNA with high affinity upon DMSO displacement, opening new perspectives for the development of optimized drug substances

    Asymmetric Phenyl Substitution: An Effective Strategy to Enhance the Photosensitizing Potential of Curcuminoids

    Get PDF
    Curcumin has been demonstrated to exhibit photosensitized bactericidal activity. However, the full exploitation of curcumin as a photo-pharmaceutical active principle is hindered by fast deactivation of the excited state through the transfer of the enol proton to the keto oxygen. Introducing an asymmetry in the molecular structure through acting on the phenyl substituents is expected to be a valuable strategy to impair this undesired de-excitation mechanism competing with the therapeutically relevant ones. In this study, two asymmetric curcumin analogs were synthesized and characterized as to their electronic-state transition spectroscopic properties. Fluorescence decay distributions were also reconstructed. Their analysis confirmed the substantial stabilization of the fluorescent state with respect to the parent compound. Nuclear magnetic resonance experiments were performed with the aim of determining the structural features of the keto–enol ring and the strength of the keto–enol hydrogen bond. Electronic structure calculations were also undertaken to elucidate the effects of substitution on the features of the keto–enol semi-aromatic system and the proneness to proton transfer. Finally, their singlet oxygen-generation efficiency was compared to that of curcumin through the 9,10-dimethylanthracene fluorescent assay
    corecore