3,908 research outputs found
Position-sensorless control of permanent-magnet-assisted synchronous reluctance motor
The sensorless control of permanent-magnet-assisted synchronous reluctance (PMASR) motors is investigated, in order to conjugate the advantages of the sensorless control with full exploitation of the allowed operating area, for a given inverter. An additional pulsating flux is injected in the d-axis direction at low and zero speed, while it is dropped out, at large speed, to save voltage and additional loss. A flux-observer-based control scheme is used, which includes an accurate knowledge of the motor magnetic behavior. This leads, in general, to good robustness against load variations, by counteracting the magnetic cross saturation effect. Moreover, it allows an easy and effective correspondence between the wanted torque and flux and the set values of the chosen control variables, that is d-axis flux and q-axis current. Experimental verification of the proposed method is given, both steady-state and dynamic performance are outlined. A prototype PMASR motor will be used to this aim, as part of a purposely assembled prototype drive, for light traction application (electric scooter
MiniBooNE
The physics motivations, design, and status of the Booster Neutrino
Experiment at Fermilab, MiniBooNE, are briefly discussed. Particular emphasis
is given on the ongoing preparatory work that is needed for the MiniBooNE muon
neutrino to electron neutrino oscillation appearance search. This search aims
to confirm or refute in a definitive and independent way the evidence for
neutrino oscillations reported by the LSND experiment.Comment: 3 pages, no figures, to appear in the proceedings of the 9th
International Conference on Astroparticle and Underground Physics (TAUP
2005), Zaragoza, Spain, 10-14 Sep 200
Bayesian Autoregressive Frailty Models for Inference in Recurrent Events
We propose autoregressive Bayesian semi-parametric models for gap times between recurrent events. The aim is two-fold: inference on the effect of possibly time-varying covariates on the gap times and clustering of individuals based on the time trajectory of the recurrent event. Time-dependency between gap times is taken into account through the specification of an autoregressive component for the frailty parameters influencing the response at different times. The order of the autoregression may be assumed unknown and is an object of inference. We consider two alternative approaches to perform model selection under this scenario. Covariates may be easily included in the regression framework and censoring and missing data are easily accounted for. As the proposed methodologies lie within the class of Dirichlet process mixtures, posterior inference can be performed through efficient MCMC algorithms. We illustrate the approach through simulations and medical applications involving recurrent hospitalizations of cancer patients and successive urinary tract infections
An updated Monte Carlo calculation of the CNGS neutrino beam
The new release of the CNGS neutrino beam simulation, which describes the beam-line features according to its final design, and its main results are presented and discussed. Storage of neutrino identity, energy and history in n-tuple format is also described, so that the experiments at the Gran Sasso can fully exploit all the informations from beam simulations
Systematic procedure for the efficient design of folded waveguide comb-line filters
[EN] A systematic procedure for the efficient design of folded waveguide comb-line filters is presented. The proposed strategy is based on dividing the design process in more simple stages, in order to reduce the number of variables to be optimized in each step of the design process. The electrical response of an equivalent circuit model of the waveguide component considered in each step is used as a target response. Moreover, a method for obtaining an initial value for some key dimensions of the filter is also addressed. Finally, an S-band 6-pole folded comb-line filter has been successfully designed following the proposed design strategy.San-Blas, AA.; PĂ©rez-Guijarro, J.; Boria Esbert, VE.; Guglielmi, M. (2019). Systematic procedure for the efficient design of folded waveguide comb-line filters. IEEE. 1-4. https://doi.org/10.1109/NEMO.2019.8853707S1
Temporal control of Wnt signaling is required for habenular neuron diversity and brain asymmetry
Precise temporal coordination of signaling processes is pivotal for cellular differentiation during embryonic development. A vast number of secreted molecules are produced and released by cells and tissues, and travel in the extracellular space. Whether they induce a signaling pathway and instruct cell fate, however, depends on a complex network of regulatory mechanisms, which are often not well understood. The conserved bilateral left-right asymmetrically formed habenulae of the zebrafish are an excellent model for investigating how signaling control facilitates the generation of defined neuronal populations. Wnt signaling is required for habenular neuron type specification, asymmetry and axonal connectivity. The temporal regulation of this pathway and the players involved have, however, remained unclear. We find that tightly regulated temporal restriction of Wnt signaling activity in habenular precursor cells is crucial for the diversity and asymmetry of habenular neuron populations. We suggest a feedback mechanism whereby the tumor suppressor Wnt inhibitory factor Wif1 controls the Wnt dynamics in the environment of habenular precursor cells. This mechanism might be common to other cell types, including tumor cells
- …