1,538 research outputs found
Universal scaling behavior at the upper critical dimension of non-equilibrium continuous phase transitions
In this work we analyze the universal scaling functions and the critical
exponents at the upper critical dimension of a continuous phase transition. The
consideration of the universal scaling behavior yields a decisive check of the
value of the upper critical dimension. We apply our method to a non-equilibrium
continuous phase transition. But focusing on the equation of state of the phase
transition it is easy to extend our analysis to all equilibrium and
non-equilibrium phase transitions observed numerically or experimentally.Comment: 4 pages, 3 figure
The Dynamics of Public Attention: Agenda‐Setting Theory Meets Big Data
Researchers have used surveys and experiments to better understand communication dynamics, but confront consistent distortion from self‐report data. But now both digital exposure and resulting expressive behaviors (such as tweets) are potentially accessible for direct analysis with important ramifications for the formulation of communication theory. We utilize “big data” to explore attention and framing in the traditional and social media for 29 political issues during 2012. We find agenda setting for these issues is not a one‐way pattern from traditional media to a mass audience, but rather a complex and dynamic interaction. Although the attentional dynamics of traditional and social media are correlated, evidence suggests that the rhythms of attention in each respond to a significant degree to different drummers .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106877/1/jcom12088.pd
Approximating the monomer-dimer constants through matrix permanent
The monomer-dimer model is fundamental in statistical mechanics. However, it
is #P-complete in computation, even for two dimensional problems. A
formulation in matrix permanent for the partition function of the monomer-dimer
model is proposed in this paper, by transforming the number of all matchings of
a bipartite graph into the number of perfect matchings of an extended bipartite
graph, which can be given by a matrix permanent. Sequential importance sampling
algorithm is applied to compute the permanents. For two-dimensional lattice
with periodic condition, we obtain , where the exact value is
. For three-dimensional lattice with periodic condition,
our numerical result is , {which agrees with the best known
bound .}Comment: 6 pages, 2 figure
Cryo-Preparation and Planar Magnetron Sputtering for Low Temperature Scanning Electron Microscopy
Cryo-preparation is a reliable technique for the structural investigation of food products in low temperature scanning electron microscopy (SEM). Artifacts, such as, the segregation of water/non-water ingredients, occur during the freezing process by the crystallization of ice; they can be helpful for correct interpretation of visualized details, e.g., the detection of water containing compartments. The size of the segregation structures depends on water concentration and specimen thickness. The condensation of water vapor (ice contamination) is influenced by the specimen temperature and the partial pressure of the water inside the vacuum system. Furthermore, the evaporation (sublimation, etching) of specimen water can be regulated by monitoring the specimen temperature. Sublimation under SEM observation, i.e., in situ etching at low acceleration voltage, allows the progress of etching to be observed continuously, prior to the coating of the specimen inside a dedicated cryo-preparation system attached to the SEM. Coating of specimens provides superior structural resolution compared with the observation of uncoated samples. A coating layer of platinum ( ~ 1-2 nm thick), deposited on a cold substrate by planar magnetron sputtering, is almost homogenous and has a density close to that of the solid metal. Its use allows bulk biological specimens to be observed in low temperature SEM with a structural resolution up to the visualization of transmembrane proteins
An investigation of standard thermodynamic quantities as determined via models of nuclear multifragmentation
Both simple and sophisticated models are frequently used in an attempt to
understand how real nuclei breakup when subjected to large excitation energies,
a process known as nuclear multifragmentation. Many of these models assume
equilibriumthermodynamics and produce results often interpreted as evidence of
a phase transition. This work examines one class of models and employs standard
thermodynamical procedure to explore the possible existence and nature of a
phase transition. The role of various terms, e.g. Coulomb and surface energy,
is discussed.Comment: 19 two-column format pages with 24 figure
A NOVEL STUDY EXAMINING COGNITIVE-MOTOR INTERFERENCE AFTER ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION
The aim of this study is to assess the feasibility of examining cognitive motor interference (CMi) in athletes following anterior cruciate ligament reconstruction (ACLR) and return to sport through electroencephalography (EEG) and three-dimensional motion capture recordings. A 128-electrode EEG system is used to track brain wave patterns for specific biomarkers of CMi during sitting and balance tasks. An 8-camera Optitrack system is used to obtain three-dimensional kinematics during anticipated and unanticipated drop vertical jumps. Preliminary EEG N200 amplitudes (ACL: -4.99 ± 2.39; Control: -7.75 ± 5.83) and peak knee flexion (ACL: 93.29 ± 12.92°; Control: 92.87 ± 7.17°) during dual-task and unanticipated landings, respectively, demonstrate the feasibility of this study. Future work will continue to assess the effect of CMi on risk factors for secondary ACL injury
The liquid to vapor phase transition in excited nuclei
For many years it has been speculated that excited nuclei would undergo a
liquid to vapor phase transition. For even longer, it has been known that
clusterization in a vapor carries direct information on the liquid- vapor
equilibrium according to Fisher's droplet model. Now the thermal component of
the 8 GeV/c pion + 197Au multifragmentation data of the ISiS Collaboration is
shown to follow the scaling predicted by Fisher's model, thus providing the
strongest evidence yet of the liquid to vapor phase transition.Comment: four pages, four figures, first two in color (corrected typo in Ref.
[26], corrected error in Fig. 4
Childhood febrile illness and the risk of myopia in UK Biobank participants
Purpose Historical reports suggest febrile illness during childhood is a risk factor for myopia. The establishment of the UK Biobank provided a unique opportunity to investigate this relationship.
Patients and methods We studied a sample of UK Biobank participants of White ethnicity aged 40–69 years old who underwent autorefraction (N=91 592) and were classified as myopic (≤−0.75 Dioptres (D)), highly myopic (≤−6.00 D), or non-myopic (>−0.75 D). Self-reported age at diagnosis of past medical conditions was ascertained during an interview with a nurse at a Biobank assessment centre. Logistic regression analysis was used to calculate the odds ratio (OR) for myopia or high myopia associated with a diagnosis before age 17 years of each of nine febrile illnesses, after adjusting for potential confounders (age, sex, highest educational qualification, and birth order).
Results Rubella, mumps, and pertussis were associated with myopia: rubella, OR=1.38, 95% CI: 1.03–1.85, P=0.030; mumps, OR=1.32, 95% CI: 1.07–1.64, P=0.010; and pertussis, OR=1.39, 95% CI 1.03–1.87, P=0.029. Measles, rubella, and pertussis were associated with high myopia: measles, OR=1.48, 95% CI: 1.07–2.07, P=0.019; rubella, OR=1.94, 95% CI: 1.12–3.35, P=0.017; and pertussis, OR=2.15, 95% CI: 1.24–3.71, P=0.006. The evidence did not support an interaction between education and febrile illness in explaining the above risks.
Conclusion A history of childhood measles, rubella, or pertussis was associated with high myopia, whereas a history of childhood rubella, mumps, or pertussis was associated with any myopia. The reasons for these associations are unclear
Recommended from our members
Simple model of adsorption on external surface of carbon nanotubes: a new analytical approach basing on molecular simulation data
Nitrogen adsorption on carbon nanotubes is wide- ly studied because nitrogen adsorption isotherm measurement is a standard method applied for porosity characterization. A further reason is that carbon nanotubes are potential adsorbents for separation of nitrogen from oxygen in air. The study presented here describes the results of GCMC simulations of nitrogen (three site model) adsorption on single and multi walled closed nanotubes. The results obtained are described by a new adsorption isotherm model proposed in this study. The model can be treated as the tube analogue of the GAB isotherm taking into account the lateral adsorbate-adsorbate interactions. We show that the model describes the simulated data satisfactorily. Next this new approach is applied for a description of experimental data measured on different commercially available (and characterized using HRTEM) carbon nanotubes. We show that generally a quite good fit is observed and therefore it is suggested that the observed mechanism of adsorption in the studied materials is mainly determined by adsorption on tubes separated at large distances, so the tubes behave almost independently
Sensitization and desensitization of burn patients as potential candidates for vascularized composite allotransplantation
Sensitization describes the acquired ability of the immune system to react to foreign human leukocyte antigens (HLA) by producing antibodies and developing memory cells. In the field of transplantation, recipient preformed HLA antibodies due to previous sensitization have been identified - beneath ABO incompatibility - as a major factor for acute graft rejection. Several reasons for sensitization have largely been studied, such as previous blood transfusions, pregnancies or former transplants. Recent studies indicate that the use of assist devices (e.g. ECMO) or cadaveric skin allotransplantation providing temporary coverage in burn patients may lead to additional sensitization. As vascularized composite allotransplantation (VCA) has become a rapidly advancing therapeutic option for reconstruction of complex tissue defects in burns, it seems even more important to become familiar with immunological principles and to be cautiously aware of both sources of sensitization and therapeutic concepts in burns avoiding sensitization. This may also include emergency VCAs in burn patients as potential strategy for early definitive reconstruction avoiding procedures triggering HLA antibody formation. We hereby provide an overview on current evidence in the field of pre- and peritrans-plant sensitization, followed by posttransplant strategies of desensitization and their potential impact on future treatments of burn patients. (C) 2015 Elsevier Ltd and ISBI. All rights reserved.Peer reviewe
- …