15 research outputs found
Catching the Bound States in the Continuum of a Phantom Atom in Graphene
We explore theoretically the formation of bound states in the continuum
(BICs) in graphene hosting two collinear adatoms situated at different sides of
the sheet and at the center of the hexagonal cell, where a phantom atom of a
fictitious lattice emulates the six carbons of the cell. We verify that in this
configuration the local density of states (LDOS) near the Dirac points exhibits
two characteristic features: i) the cubic dependence on energy instead of the
linear one for graphene as found in New J. Phys. 16, 013045 (2014) and ii)
formation of BICs as aftermath of a Fano destructive interference assisted by
the Coulomb correlations in the adatoms. For the geometry where adatoms are
collinear to carbon atoms, we report absence of BICs
Quantum phase transition triggering magnetic BICs in graphene
Graphene hosting a pair of collinear adatoms in the phantom atom
configuration has pseudogap with cubic scaling on energy,
which leads to the appearance of
spin-degenerate bound states in the continuum (BICs) [Phys. Rev. B 92, 045409
(2015)]. In the case when adatoms are locally coupled to a single carbon atom
the pseudogap scales linearly with energy, which prevents the formation of
BICs. In this Letter, we explore the effects of non-local coupling
characterized by the Fano factor of interference tunable by changing
the slope of the Dirac cones in the graphene band-structure. We demonstrate
that three distinct regimes can be identified: i) for (critical
point) a mixed pseudogap appears
yielding a phase with spin-degenerate BICs; ii) near when
the system undergoes a quantum phase
transition in which the new phase is characterized by magnetic BICs and iii) at
a second critical value the cubic scaling of the pseudogap with
energy characteristic to the phantom atom
configuration is restored and the phase with non-magnetic BICs is recovered.
The phase with magnetic BICs can be described in terms of an effective
intrinsic exchange field of ferromagnetic nature between the adatoms mediated
by graphene monolayer. We thus propose a new type of quantum phase transition
resulting from the competition between the states characterized by
spin-degenerate and magnetic BICs
Dimensionality effects in the LDOS of ferromagnetic hosts probed via STM: spin-polarized quantum beats and spin filtering
We theoretically investigate the local density of states (LDOS) probed by a
STM tip of ferromagnetic metals hosting a single adatom and a subsurface
impurity. We model the system via the two-impurity Anderson Hamiltonian. By
using the equation of motion with the relevant Green functions, we derive
analytical expressions for the LDOS of two host types: a surface and a quantum
wire. The LDOS reveals Friedel-like oscillations and Fano interference as a
function of the STM tip position. These oscillations strongly depend on the
host dimension. Interestingly, we find that the spin-dependent Fermi wave
numbers of the hosts give rise to spin-polarized quantum beats in the LDOS.
While the LDOS for the metallic surface shows a damped beating pattern, it
exhibits an opposite behavior in the quantum wire. Due to this absence of
damping, the wire operates as a spatially resolved spin filter with a high
efficiency.Comment: revised tex
Encrypting Majorana fermion qubits as bound states in the continuum
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPWe theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.96415CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP307573/2015-0Sem informação2015/23539-82015/26655-
Effect of inter-adatoms correlations on the local density of states of graphene
We discuss theoretically the local density of states (LDOS) of a graphene sheet hosting two distant adatoms located at the center of hexagonal cells. By putting laterally a scanning tunneling microscope (STM) tip over a carbon atom, two remarkable novel effects can be detected: i) a multilevel structure in the LDOS and ii) beating patterns in the induced LDOS. We show that both phenomena occur nearby the Dirac points and are highly anisotropic. Furthermore, we propose conductance experiments employing STM as a probe for the observation of such exotic manifestations in the LDOS of graphene induced by inter-adatoms correlations