12 research outputs found

    Catching the Bound States in the Continuum of a Phantom Atom in Graphene

    Full text link
    We explore theoretically the formation of bound states in the continuum (BICs) in graphene hosting two collinear adatoms situated at different sides of the sheet and at the center of the hexagonal cell, where a phantom atom of a fictitious lattice emulates the six carbons of the cell. We verify that in this configuration the local density of states (LDOS) near the Dirac points exhibits two characteristic features: i) the cubic dependence on energy instead of the linear one for graphene as found in New J. Phys. 16, 013045 (2014) and ii) formation of BICs as aftermath of a Fano destructive interference assisted by the Coulomb correlations in the adatoms. For the geometry where adatoms are collinear to carbon atoms, we report absence of BICs

    Quantum phase transition triggering magnetic BICs in graphene

    Full text link
    Graphene hosting a pair of collinear adatoms in the phantom atom configuration has pseudogap with cubic scaling on energy, Î”âˆâˆŁÎ”âˆŁ3\Delta\propto|\varepsilon|^{3} which leads to the appearance of spin-degenerate bound states in the continuum (BICs) [Phys. Rev. B 92, 045409 (2015)]. In the case when adatoms are locally coupled to a single carbon atom the pseudogap scales linearly with energy, which prevents the formation of BICs. In this Letter, we explore the effects of non-local coupling characterized by the Fano factor of interference q0,q_{0}, tunable by changing the slope of the Dirac cones in the graphene band-structure. We demonstrate that three distinct regimes can be identified: i) for q0<qc1q_{0}<q_{c1} (critical point) a mixed pseudogap Î”âˆâˆŁÎ”âˆŁ,∣Δ∣2\Delta\propto|\varepsilon|,|\varepsilon|^{2} appears yielding a phase with spin-degenerate BICs; ii) near q0=qc1q_{0}=q_{c1} when Î”âˆâˆŁÎ”âˆŁ2\Delta\propto|\varepsilon|^{2} the system undergoes a quantum phase transition in which the new phase is characterized by magnetic BICs and iii) at a second critical value q0>qc2q_{0}>q_{c2} the cubic scaling of the pseudogap with energy Î”âˆâˆŁÎ”âˆŁ3\Delta\propto|\varepsilon|^{3} characteristic to the phantom atom configuration is restored and the phase with non-magnetic BICs is recovered. The phase with magnetic BICs can be described in terms of an effective intrinsic exchange field of ferromagnetic nature between the adatoms mediated by graphene monolayer. We thus propose a new type of quantum phase transition resulting from the competition between the states characterized by spin-degenerate and magnetic BICs

    Encrypting Majorana fermion qubits as bound states in the continuum

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPWe theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.96415CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP307573/2015-0Sem informação2015/23539-82015/26655-

    Stimuli-SoS: a model-based approach to derive stimuli generators for simulations of systems-of-systems software architectures

    No full text
    Abstract Background Systems-of-systems (SoS) are alliances of independent and interoperable software-intensive systems. SoS often support critical domains, being required to exhibit a reliable operation, specially because people’s safety relies on their services. In this direction, simulations enable the validation of different operational scenarios in a controlled environment, allowing a benchmarking of its response as well as revealing possible breaches that could lead to failures. However, simulations are traditionally manual, demanding a high level of human intervention, being costly and error-prone. A stimuli generator could aid in by continuously providing data to trigger a SoS simulation and maintaining its operation. Methods We established a model-based approach termed Stimuli-SoS to support the creation of stimuli generators to be used in SoS simulations. Stimuli-SoS uses software architecture descriptions for automating the creation of such generators. Specifically, this approach transforms SoSADL, a formal architectural description language for SoS, into dynamic models expressed in DEVS, a simulation formalism. We carried out a case study in which Stimuli-SoS was used to automatically produce stimuli generators for a simulation of a flood monitoring SoS. Results We run simulations of a SoS architectural configuration with 69 constituent systems, i.e., 42 sensors, 9 crowdsourcing systems, and 18 drones. Stimuli generators were automatically generated for each type of constituent. These stimuli generators were capable of receiving the input data from the database and generating the expected stimuli for the constituents, allowing to simulate constituent systems interoperations into the flood monitoring SoS. Using Stimuli-SoS, we simulated 38 days of flood monitoring in little more than 6 h. Stimuli generators correctly forwarded data to the simulation, which was able to reproduce 29 flood alerts triggered by the SoS during a flooding event. In particular, Stimuli-SoS is almost 65 times more productive than a manual approach to producing data for the same type of simulation. Conclusions Our approach succeeded in automatically deriving a functional stimuli generator that can reproduce environmental conditions for simulating a SoS. In particular, we presented new contributions regarding productivity and automation for the use of a model-based approach in SoS engineering
    corecore