220 research outputs found

    Core genome multilocus sequence typing of Clostridioides difficile to investigate transmission in the hospital setting.

    Get PDF
    Traditional epidemiological investigations of healthcare-associated Clostridioides difficile infection (HA-CDI) are often insufficient. This study aimed to evaluate a procedure that includes secondary isolation and genomic typing of single toxigenic colonies using core genome multilocus sequence typing (cgMLST) for the investigation of C. difficile transmission. We analyzed retrospectively all toxigenic C. difficile-positive stool samples stored at the Lausanne University Hospital over 6 consecutive months. All isolates were initially typed and classified using a modified double-locus sequence typing (DLST) method. Genome comparison of isolates with the same DLST and clustering were subsequently performed using cgMLST. The electronic administrative records of patients with CDI were investigated for spatiotemporal epidemiological links supporting hospital transmission. A comparative descriptive analysis between genomic and epidemiological data was then performed. From January to June 2021, 86 C. difficile isolates were recovered from thawed samples of 71 patients. Thirteen different DLST types were shared by > 1 patient, and 13 were observed in single patients. A genomic cluster was defined as a set of isolates from different patients with ≤ 3 locus differences, determined by cgMLST. Seven genomic clusters were identified, among which plausible epidemiological links were identified in only 4/7 clusters. Among clusters determined by cgMLST analysis, roughly 40% included unexplained HA-CDI acquisitions, which may be explained by unidentified epidemiological links, asymptomatic colonization, and/or shared common community reservoirs. The use of DLST, followed by whole genome sequencing analysis, is a promising and cost-effective stepwise approach for the investigation of CDI transmission in the hospital setting

    Frequencies and Damping rates of a 2D Deformed Trapped Bose gas above the Critical Temperature

    Full text link
    We derive the equation of motion for the velocity fluctuations of a 2D deformed trapped Bose gas above the critical temperature in the hydrodynamical regime. From this equation, we calculate the eigenfrequencies for a few low-lying excitation modes. Using the method of averages, we derive a dispersion relation in a deformed trap that interpolates between the collisionless and hydrodynamic regimes. We make use of this dispersion relation to calculate the frequencies and the damping rates for monopole and quadrupole mode in both the regimes. We also discuss the time evolution of the wave packet width of a Bose gas in a time dependent as well as time independent trap.Comment: 13 pages, latex fil

    Dissipative dynamics of vortex arrays in trapped Bose-condensed gases: neutron stars physics on μ\muK scale

    Full text link
    We develop a theory of dissipative dynamics of large vortex arrays in trapped Bose-condensed gases. We show that in a static trap the interaction of the vortex array with thermal excitations leads to a non-exponential decay of the vortex structure, and the characteristic lifetime depends on the initial density of vortices. Drawing an analogy with physics of pulsar glitches, we propose an experiment which employs the heating of the thermal cloud in the course of the decay of the vortex array as a tool for a non-destructive study of the vortex dynamics.Comment: 4 pages, revtex; revised versio

    Impact of thoracoabdominal imaging on diagnosis and management in patients with suspected infective endocarditis.

    Get PDF
    Embolic events (EEs) are a common complication of infective endocarditis (IE) and their presence can impact diagnosis and modify the therapeutic plan. The present study aimed to describe the role of thoracoabdominal imaging, either thoracoabdominal-pelvic Computed Tomography or <sup>18</sup> F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography, on diagnosis and management of patients with suspected IE. This study was conducted at a university hospital, from January 2014 to June 2022. EEs and IE were defined according to modified Duke criteria. Among 966 episodes with suspected IE and thoracoabdominal imaging, 528 (55%) patients were asymptomatic. At least one EE was found in 205 (21%) episodes. Based on thoracoabdominal imaging findings, the diagnosis was reclassified from rejected to possible or from possible to definite IE in 6 (1%) and 10 (1%) episodes, respectively. Among the 413 patients with IE, at least one EE was found on thoracoabdominal imaging in 143 (35%) episodes. Together with the presence of left-side valvular vegetation >10 mm, the results of thoracoabdominal imaging established a surgical indication (prevention of embolism) in 15 (4%) episodes, 7 of which were asymptomatic. Thoracoabdominal imaging performed in asymptomatic patients with suspected IE improved the diagnosis in only a small proportion of patients. Thoracoabdominal imaging led to a new surgical indication (in association with left-side valvular vegetation >10 mm) in only a small percentage of patients

    Oscillations of rotating trapped Bose-Einstein condensates

    Full text link
    The tensor-virial method is applied for a study of oscillation modes of uniformly rotating Bose-Einstein condensed gases, whose rigid body rotation is supported by an vortex array. The second order virial equations are derived in the hydrodynamic regime for an arbitrary external harmonic trapping potential assuming that the condensate is a superfluid at zero temperature. The axisymmetric equilibrium shape of the condensate is determined as a function of the deformation of the trap; its domain of stability is bounded by the constraint Ω<1\Omega<1 on the rotation rate (measured in units of the trap frequency ω0\omega_0.) The oscillations of the axisymmetric condensate are stable with respect to the transverse-shear, toroidal and quasi-radial modes of oscillations, corresponding to the l=2l= 2, m=0,1,2| m| = 0,1,2 surface deformations. In non-axisymmetric traps, the equilibrium constrains the (dimensionless) deformation in the plane orthogonal to the rotation to the domain A2>Ω2A_2 > \Omega^2 with Ω<1\Omega< 1. The second harmonic oscillation modes in non-axisymmetric traps separate into two classes which have even or odd parity with respect to the direction of the rotation axis. Numerical solutions show that these modes are stable in the parameter domain where equilibrium figures exist.Comment: 16 pages, including 4 figures, uses Revtex; v2 includes a treatment of modes in unisotropic traps; PRA in pres

    Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa

    Get PDF
    AbstractRespiratory isolates of Pseudomonas aeruginosa were collected from 58 critically-ill patients with ventilator-associated pneumonia. Expression of elastase and pyocyanin was assessed semi-quantitatively, while quorum-sensing activity was assessed by quantifying the levels of the autoinducers N-3-oxododecanoyl-L-homoserine lactone (C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL). Correlations were sought between quorum-sensing activity and the expression of these two virulence factors, and all results were compared to those obtained with the laboratory reference strains PA103, a strain defective in quorum-sensing, and PAO1, a functional quorum-sensing strain. More than two-thirds of clinically pathogenic isolates had increased levels of elastase and/or pyocyanin, and high quorum-sensing activity, as assessed by autoinducer levels. However, a strong correlation between quorum-sensing activity and virulence factor production was revealed only for elastase and not for pyocyanin (C12-HSL/elastase, r = 0.7, p 2 × 10−9; C4-HSL/elastase, r = 0.7, p 2 × 10−9). These data suggest that the pathogenicity of P. aeruginosa isolates from critically-ill patients with ventilator-associated pneumonia is caused, at least in part, by an increase in elastase production regulated by quorum-sensing, while increased pyocyanin production in these isolates may be regulated predominantly by mechanisms other than quorum-sensing

    Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice.

    Get PDF
    Gut dysbiosis due to the adverse effects of antibiotics affects outcomes of lung infection. Previous murine models relied on significant depletion of both gut and lung microbiota, rendering the analysis of immune gut-lung cross-talk difficult. Here, we study the effects of antibiotic-induced gut dysbiosis without lung dysbiosis on lung immunity and the consequences on acute P. aeruginosa lung infection. C57BL6 mice received 7 days oral vancomycin-colistin, followed by normal regimen or fecal microbial transplant or Fms-related tyrosine kinase 3 ligand (Flt3-Ligand) over 2 days, and then intra-nasal P. aeruginosa strain PAO1. Gut and lung microbiota were studied by next-generation sequencing, and lung infection outcomes were studied at 24 h. Effects of vancomycin-colistin on underlying immunity and bone marrow progenitors were studied in uninfected mice by flow cytometry in the lung, spleen, and bone marrow. Vancomycin-colistin administration induces widespread cellular immunosuppression in both the lung and spleen, decreases circulating hematopoietic cytokine Flt3-Ligand, and depresses dendritic cell bone marrow progenitors leading to worsening of P. aeruginosa lung infection outcomes (bacterial loads, lung injury, and survival). Reversal of these effects by fecal microbial transplant shows that these alterations are related to gut dysbiosis. Recombinant Flt3-Ligand reverses the effects of antibiotics on subsequent lung infection. These results show that gut dysbiosis strongly impairs monocyte/dendritic progenitors and lung immunity, worsening outcomes of P. aeruginosa lung infection. Treatment with a fecal microbial transplant or immune stimulation by Flt3-Ligand both restore lung cellular responses to and outcomes of P. aeruginosa following antibiotic-induced gut dysbiosis

    Collective modes of a quasi two-dimensional Bose condensate in large gas parameter regime

    Full text link
    We have theoretically studied the collective modes of a quasi two-dimensional (Q2D) Bose condensate in the large gas parameter regime by using a formalism which treats the interaction energy beyond the mean-field approximation. In the calculation we use the perturbative expansion for the interaction energy by incorporating the Lee, Huang and Yang (LHY) correction term. The results show that incorporation of this higher order term leads to detectable modifications in the mode frequencies.Comment: 10 pages, 2 figure
    corecore