1,166 research outputs found

    Transient thermo-solutal convection in a tilted porous enclosure heated from below and salted from above

    Get PDF
    The confinement of CO2 in deep geothermal reservoirs as a means of mitigation of greenhouse gas emissions is continuously motivating research on the retention capacity of these deep aquifers. An important physical containment mechanism is related with CO2 dissolution and thermo-solutal convection. In this context, numerical simulations are performed in this work to assess the effect of inclination, Rayleigh number, and buoyancy ratio on the convective transport in a rectangular porous medium. The porous enclosure is heated from below and cooled from above, whereas a solute is dissolved through the upper boundary with a constant concentration condition and no mass loss through the other boundaries. A set of governing parameters is considered in this assessment: two buoyancy ratios with dominant solute buoyant forces (10 and 100), three Rayleigh numbers (10, 50, and 80), and three inclination angles plus the horizontal case for reference (5°, 10°, and 15°). The solution to the problem is based on a Finite Volume method along with the fixed point iteration for the coupled differential equations, and a Conjugate Gradient algorithm for the algebraic system. The model is validated and tested under mesh analysis. The numerical results show that the inclination angle has a minor effect on the convective mixing properties of the porous medium in comparison with the Rayleigh number and the buoyancy ratio. Increasing the angle slightly decreases the mixing rate as a consequence of the formation of preferential flow paths associated with the inclination, these preferential flow paths make mixing less efficient and give rise to zonation of solute concentration

    Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus

    Get PDF
    A 15-year-old patient with cystic fibrosis with a disseminated Mycobacterium abscessus infection was treated with a three-phage cocktail following bilateral lung transplantation. Effective lytic phage derivatives that efficiently kill the infectious M. abscessus strain were developed by genome engineering and forward genetics. Intravenous phage treatment was well tolerated and associated with objective clinical improvement, including sternal wound closure, improved liver function, and substantial resolution of infected skin nodules

    The Regulation and Expression of the Creatine Transporter: A Brief Review of Creatine Supplementation in Humans and Animals

    Get PDF
    Creatine monohydrate has become one of the most popular ergogenic sport supplements used today. It is a nonessential dietary compound that is both endogenously synthesized and naturally ingested through diet. Creatine ingested through supplementation has been observed to be absorbed into the muscle exclusively by means of a creatine transporter, CreaT1. The major rationale of creatine supplementation is to maximize the increase within the intracellular pool of total creatine (creatine + phosphocreatine). There is much evidence indicating that creatine supplementation can improve athletic performance and cellular bioenergetics, although variability does exist. It is hypothesized that this variability is due to the process that controls both the influx and efflux of creatine across the cell membrane, and is likely due to a decrease in activity of the creatine transporter from various compounding factors. Furthermore, additional data suggests that an individual's initial biological profile may partially determine the efficacy of a creatine supplementation protocol. This brief review will examine both animal and human research in relation to the regulation and expression of the creatine transporter (CreaT). The current literature is very preliminary in regards to examining how creatine supplementation affects CreaT expression while concomitantly following a resistance training regimen. In conclusion, it is prudent that future research begin to examine CreaT expression due to creatine supplementation in humans in much the same way as in animal models

    NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration

    Get PDF
    BACKGROUND: The influence of the stromal microenvironment on the progression of epithelial cancers has been demonstrated. Unravelling the mechanisms by which stromal cells affect epithelial behaviour will contribute in understanding cellular malignancy. It has been proposed that redox environment has a role in the acquisition of malignancy. In this work, we studied the influence of epithelial cells on the stromal redox status and the consequence of this phenomenon on MCF-7 cell motility. METHODS: We analysed in a co-culture system, the effect of RMF-EG mammary stromal cells on the migratory capacity of MCF-7 cell line. To test whether the NOX-dependent stromal redox environment influences the epithelial migratory behaviour, we knocked down the expression of NOX4 using siRNA strategy. The effect of TGF-b1 on NOX4 expression and activity was analysed by qPCR, and intracellular ROS production was measured by a fluorescent method. RESULTS: Migration of MCF-7 breast epithelial cells was stimulated when co-cultured with RMF-EG cells. This effect depends on stromal NOX4 expression that, in turn, is enhanced by epithelial soluble factors. Pre-treatment of stromal cells with TGF-b1 enhanced this migratory stimulus by elevating NOX4 expression and intracellular ROS production. TGF-b1 seems to be a major component of the epithelial soluble factors that stimulate NOX4 expression. CONCLUSIONS: Our results have identified that an increased stromal oxidative status, mainly provided by an elevated NOX4 expression, is a permissive element in the acquisition of epithelial migratory properties. The capacity of stromal cells to modify their intracellular ROS production, and accordingly, to increase epithelial motility, seems to depend on epithelial soluble factors among which TGF-b1 have a decisive role.This work was supported by the grant (1080196 to JM) from the Fondo Nacional de Ciencia y Tecnologı´a (FONDECYT) of Chile

    Chiral plasmonics of self-assembled nanorod dimers

    Get PDF
    Chiral nanoscale photonic systems typically follow either tetrahedral or helical geometries that require four or more different constituent nanoparticles. Smaller number of particles and different chiral geometries taking advantage of the self-organization capabilities of nanomaterials will advance understanding of chiral plasmonic effects, facilitate development of their theory, and stimulate practical applications of chiroplasmonics. Here we show that gold nanorods self-assemble into side-by-side orientated pairs and ‘‘ladders’’ in which chiral properties originate from the small dihedral angle between them. Spontaneous twisting of one nanorod versus the other one breaks the centrosymmetric nature of the parallel assemblies. Two possible enantiomeric conformations with positive and negative dihedral angles were obtained with different assembly triggers. The chiral nature of the angled nanorod pairs was confirmed by 4p full space simulations and the first example of single-particle CD spectroscopy. Self-assembled nanorod pairs and ‘‘ladders’’ enable the development of chiral metamaterials, (bio)sensors, and new catalytic processes

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Regeneration niche differentiates functional strategies of desert woody plant species

    Get PDF
    Plant communities vary dramatically in the number and relative abundance of species that exhibit facilitative interactions, which contributes substantially to variation in community structure and dynamics. Predicting species’ responses to neighbors based on readily measurable functional traits would provide important insight into the factors that structure plant communities. We measured a suite of functional traits on seedlings of 20 species and mature plants of 54 species of shrubs from three arid biogeographic regions. We hypothesized that species with different regeneration niches—those that require nurse plants for establishment (beneficiaries) versus those that do not (colonizers)—are functionally different. Indeed, seedlings of beneficiary species had lower relative growth rates, larger seeds and final biomass, allocated biomass toward roots and height at a cost to leaf mass fraction, and constructed costly, dense leaf and root tissues relative to colonizers. Likewise at maturity, beneficiaries had larger overall size and denser leaves coupled with greater water use efficiency than colonizers. In contrast to current hypotheses that suggest beneficiaries are less “stress-tolerant” than colonizers, beneficiaries exhibited conservative functional strategies suited to persistently dry, low light conditions beneath canopies, whereas colonizers exhibited opportunistic strategies that may be advantageous in fluctuating, open microenvironments. In addition, the signature of the regeneration niche at maturity indicates that facilitation expands the range of functional diversity within plant communities at all ontogenetic stages. This study demonstrates the utility of specific functional traits for predicting species’ regeneration niches in hot deserts, and provides a framework for studying facilitation in other severe environments

    Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Get PDF
    This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), CO-chemisorption, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM-EDX) and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions
    corecore