12,740 research outputs found

    Thermal stability of the cu-ceo2 interface on silica and alumina, and its relation with activity in the oxidation reaction of co and the decomposition of n2o

    Get PDF
    Indexación: Scopus; Scielo.The effect of the support on the formation of the Cu-CeO2 interface and its thermal stability after calcination at 500, 700 and 900 °C is studied. The supports used are SiO2, because of its inert character, and Al2O3, because it can interact with the Cu and Ce species on the surface. The catalysts were characterized by BET, XRD, UV-vis DRS, and TPR with H2. The catalytic activity in the CO oxidation reactions with O2 at low temperature and the decomposition of N2O were selected to visualize the effect of temperature on the concentration of Cu-CeO2 interfacial sites. The results show that at a calcination temperature of 500 °C the formation of the Cu-CeO2 interface is favored over the SiO2 support. However, the stability of the Cu-CeO2 interface on SiO2 is much lower than on Al2O3, causing a substantial decrease of the interfacial sites calcining at 700 °C, and segregation of the Cu and Ce species on the surface of the silica, with complete loss of the catalytic activity in both reactions when calcining at 900 °C. In contrast, on alumina the Cu-CeO2 interface is more stable and presents a significant catalytic activity in both reactions, even when calcining at 900 °C. The characterization results show that the sintering process of Cu species and CeO2 particles is less on the alumina support due to the greater interaction of the Cu and Ce with this support. © 2018 Sociedad Chilena de Quimica.all rights reserved.https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-97072018000304102&lng=en&nrm=iso&tlng=e

    Activity of alumina supported fe catalysts for N2O decomposition: Effects of the iron content and thermal treatment

    Get PDF
    Indexación: Scopus.The activity of Fe2O3/Al2O3 catalysts prepared by impregnation of Al2O3 with different amounts of Fe and calcination temperatures (650 and 900 °C) in the direct N2O decomposition reaction was studied. High calcination temperature was introduced to study the effect of "aging", which are the conditions prevailing in the process-gas option for N2O abatement. The catalysts were characterized by BET, XRD, UV-DRS, and H2-TPR. The incorporation of Fe promotes the alumina phase transition (g-Al2O3 to a-Al2O3) when the catalysts are calcined at 900 °C, which is accompanied by a decrease in the specifc area. The activity of the catalysts and the specifc surface area depend on Fe loading and calcination temperature. It was found that highly dispersed Fe species are more active than bulk type Fe2O3 particles. We conclude that Fe2O3/Al2O3 catalysts prepared by impregnation method are active in the decomposition of N2O, to be used at low or high reaction temperatures (tail-gas or process-gas treatments, respectively), as part of nitric acid production plant. © 2018 Sociedad Chilena de Quimica. All rights reserved.https://scielo.conicyt.cl/pdf/jcchems/v62n4/0717-9324-jcchems-62-04-3752.pd

    Geothermal systems simulation: A case study

    Get PDF
    Geothermal reservoir simulation is a key step for developing sustainable and efficient strategies for the exploitation of geothermal resources. It is applied in the assessment of several areas of reservoir engineering, such as reservoir performance and re-injection programs, pressure decline in depletion, phase transition conditions, and natural evolution of hydrothermal convection systems. Fluid flow and heat transfer in rock masses, fluid-rock chemical interaction and rock mass deformation are some of the processes addressed in reservoir modelling. The case study of the Las Tres Virgenes (LTV) geothermal field (10 MWe), Baja California Sur, Mexico is presented. Three dimensional (3D) natural state simulations were carried out from emplacement and cooling of two spherical magma chambers using a conductive approach. A conceptual model of the volcanic system was developed on a lithostratigraphic and geochronological basis. Magma chamber volumes were established from eruptive volumes estimations. The thermophysical properties of the medium were assumed to correspond to the dominant rock in each lithological unit as an initial value, and further calibration was made considering histograms of experimentally obtained thermophysical properties of rocks. As the boundaries of the model lie far from the thermal anomaly, we assumed specified temperature boundaries. A Finite Volume (FV) numerical scheme was implemented in a Fortran 90 code to solve the heat equation. Static formation temperatures from well logs were used for validation of the numerical results. Good agreement was observed in those geothermal wells dominated by conductive heat transfer. For other wells, however, it is clear that conduction alone cannot explain observed behaviour, three-dimensional convective models are being implemented for future multiphysics simulations
    corecore