48 research outputs found

    Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    Get PDF
    The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins

    Novel sulI binary vectors enable an inexpensive foliar selection method in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sulfonamide resistance is conferred by the <it>sul</it>I gene found on many <it>Enterobacteriaceae </it>R plasmids and Tn21 type transposons. The <it>sul</it>I gene encodes a sulfonamide insensitive dihydropteroate synthase enzyme required for folate biosynthesis. Transformation of tobacco, potato or <it>Arabidopsis </it>using <it>sul</it>I as a selectable marker generates sulfadiazine-resistant plants. Typically <it>sul</it>I-based selection of transgenic plants is performed on tissue culture media under sterile conditions.</p> <p>Findings</p> <p>A set of novel binary vectors containing a <it>sul</it>I selectable marker expression cassette were constructed and used to generate transgenic <it>Arabidopsis</it>. We demonstrate that the <it>sul</it>I selectable marker can be utilized for direct selection of plants grown in soil with a simple foliar spray application procedure. A highly effective and inexpensive high throughput screening strategy to identify transgenic <it>Arabidopsis </it>without use of tissue culture was developed.</p> <p>Conclusion</p> <p>Novel <it>sul</it>I-containing <it>Agrobacterium </it>binary vectors designed to over-express a gene of interest or to characterize a test promoter in transgenic plants have been constructed. These new vector tools combined with the various beneficial attributes of sulfonamide selection and the simple foliar screening strategy provide an advantageous alternative for plant biotechnology researchers. The set of binary vectors is freely available upon request.</p

    Agrobacterium-mediated transformation systems of Primula vulgaris

    Get PDF
    Background: Genetic transformation is a valuable tool and an important procedure in plant functional genomics contributing to gene discovery, allowing powerful insights into gene function and genetically controlled characteristics. Primulaceae species provide one of the best-known examples of heteromorphic flower development, a breeding system which has attracted considerable attention, including that of Charles Darwin. Molecular approaches, including plant transformation give the best opportunity to define and understand the role of genes involved in floral heteromorphy in the common primrose, Primula vulgaris, along with other Primula species. Results: Two transformation systems have been developed in P. vulgaris. The first system, Agrobacterium-mediated vacuum infiltration of seedlings, enables the rapid testing of transgenes, transiently in planta. GUS expression was observed in the cotyledons, true leaves, and roots of Primula seedlings. The second system is based on Agrobacterium tumefaciens infection of pedicel explants with an average transformation efficiency of 4.6%. This transformation system, based on regeneration and selection of transformants within in vitro culture, demonstrates stable transgene integration and transmission to the next generation. Conclusion: The two transformation systems reported here will aid fundamental research into important traits in Primula. Although, stable integration of transgenes is the ultimate goal for such analyses, transient gene expression via Agrobacterium-mediated DNA transfer, offers a simple and fast method to analyse transgene functions. The second system describes, for the first time, stable Agrobacterium-mediated transformation of Primula vulgaris, which will be key to characterising the genes responsible for the control of floral heteromorphy

    Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus

    Get PDF
    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed

    Suivi de l'oxydation de ZrB2 et ZrB2-SiC par fluorescence Induite par Laser

    No full text
    International audienceIn this study, the Laser Induced Fluorescence (LIF) technique is used to detect BO2 radicals in the gas phase above heated ZrB2 and ZrB2-20 vol. % SiC samples in air, in order to provide an in situ and real-time monitoring of their thermal oxidation. Samples are heated up to 1923 K in air flow with a 2 kW CO2 laser. The BO2 fluorescence and the laser transmission signals are monitored throughout the temperature ramp. This technique allows to detect the key steps of the oxidation (silica formation,...) and to propose more precise oxidation mechanisms as a function of temperature.Dans cette étude, la Fluorescence Induite par Laser (LIF) est utilisée pour suivre des espèces gazeuses telles que BO2(g) émises lors de l'oxydation de matériaux tels que ZrB2 ou ZrB2-SiC. Des échantillons de compositions ZrB2 etZrB2-20 vol % SiC sont chauffés dans une enceinte spécifique à la pression atmosphérique, sous air et jusqu'à 1650°C grâce à un laser CO2 de 2kW.La LIF de BO2(g) est étudiée dans le système électronique A2u - X2g avec un laser d'excitation à 547nm et une détection de la fluorescence à 580nm. Les signaux de fluorescence et d'absorption enregistrés lors de la chauffe nous ont permis de détecter les étapes clés de l'oxydation comme, le début de l'oxydation de SiC, le remplissage de la couche vitreuse ou encore l'évaporation catastrophique de la couche vitreuse.Le signal LIF a été corrélé aux réactions possibles de B2O3 avec l'air. Ce diagnostic in situ nous a permis de proposer des mécanismes d'oxydation plus précis au cours de la montée en température
    corecore