6,393 research outputs found
Comparison of aerodynamic noise from three nose-cylinder combinations
Results of experiments with three different cylinder and blunted nose combinations are discussed. Combinations include smooth cylinder with single 15 deg cone, smooth cylinder with double cone of 25 and 10 deg, and longitudinally corrugated cylinder with similar double cone
The Pulsation Properties of Procyon A
A grid of stellar evolution models for Procyon A has been calculated. These
models include the best physics available to us (including the latest opacities
and equation of state) and are based on the revised astrometric mass of Girard
et al (1996). Models were calculated with helium diffusion and with the
combined effects of helium and heavy element diffusion. Oscillation frequencies
for l=0,1,2 and 3 p-modes and the characteristic period spacing for the g-modes
were calculated for these models. We find that g-modes are sensitive to model
parameters which effect the structure of the core, such as convective core
overshoot, the heavy element abundance and the evolutionary state (main
sequence or shell hydrogen burning) of Procyon A. The p-modes are relatively
insensitive to the details of the physics used to model Procyon A, and only
depend on the evolutionary state of Procyon A. Hence, observations of p-mode
frequencies on Procyon A will serve as a robust test of stellar evolution
models.Comment: 4 pages, to appear in ApJ
Modeling Convective Core Overshoot and Diffusion in Procyon Constrained by Asteroseismic Data
We compare evolved stellar models, which match Procyons mass and position in
the HR diagram, to current ground-based asteroseismic observations. Diffusion
of helium and metals along with two conventional core overshoot descriptions
and the Kuhfuss nonlocal theory of convection are considered. We establish that
one of the two published asteroseismic data reductions for Procyon, which
mainly differ in their identification of even versus odd l-values, is a
significantly more probable and self-consistent match to our models than the
other. The most probable models according to our Bayesian analysis have evolved
to just short of turnoff, still retaining a hydrogen convective core. Our most
probable models include Y and Z diffusion and have conventional core overshoot
between 0.9 and 1.5 pressure scale heights, which increases the outer radius of
the convective core by between 22% to 28%, respectively. We discuss the
significance of this comparatively higher than expected core overshoot amount
in terms of internal mixing during evolution. The parameters of our most
probable models are similar regardless of whether adiabatic or nonadiabatic
model p-mode frequencies are compared to the observations, although, the
Bayesian probabilities are greater when the nonadiabatic model frequencies are
used. All the most probable models (with or without core overshoot, adiabatic
or nonadiabatic model frequencies, diffusion or no diffusion, including priors
for the observed HRD location and mass or not) have masses that are within one
sigma of the observed mass 1.497+/-0.037 Msun
Water vapor in the lower stratosphere measured from aircraft flight
Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11 km to 19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature are derived from the flight data and show mixing ratios predominantly between 2 and 4 micron gm/gm with an extreme range of 1 to 8 micron gm/gm. Measurement precision is estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy is estimated to be about + or - 40 percent at 19 km. A height-averaged latitudinal cross section of water vapor shows symmetry of wet and dry zones
Chandra Observations of Six QSOs at z 3
We report the results of our Chandra observations of six QSOs at
from the Palomer Transit Grism Survey. Our primary goal is to investigate the
possible systematic change of between and ,
between which a rapid rise of luminous QSO number density with cosmic time is
observed. The summed spectrum showed a power-law spectrum with photon index of
, which is similar to other unabsorbed AGNs. Combining our
QSOs with X-ray observations of QSOs at from literaure/archive,
we find a correlation of with optical luminosity. This is
consistent with the fact that the luminosity function slope of the luminous end
of the X-ray selected QSOs is steeper than that of optically-selected QSOs. We
discuss an upper limit to the redshift dependence of using a
Monte-Carlo simulation. Within the current statistical errors including the
derived limits on the redshift dependence of , we found that
the behaviors of the X-ray and optically-selected QSO number densities are
consistent with each other.Comment: 13 Pages, 3 Figures, Astronomical Journal in press, An entry in Table
2 corrected--Log Lx for PC 1000+4751 from 44.0 (incorrect) to 45.0 (correct).
A few minor errors correcte
- …