165 research outputs found

    Crypto-unitary forms of quantum evolution operators

    Full text link
    For the description of quantum evolution, the use of a manifestly time-dependent quantum Hamiltonian h(t)=h(t)\mathfrak{h}(t) =\mathfrak{h}^\dagger(t) is shown equivalent to the work with its simplified, time-independent alternative GGG\neq G^\dagger. A tradeoff analysis is performed recommending the latter option. The physical unitarity requirement is shown fulfilled in a suitable ad hoc representation of Hilbert space.Comment: 15 p

    (An)Isotropic models in scalar and scalar-tensor cosmologies

    Full text link
    We study how the constants GG and Λ\Lambda may vary in different theoretical models (general relativity with a perfect fluid, scalar cosmological models (\textquotedblleft quintessence\textquotedblright) with and without interacting scalar and matter fields and a scalar-tensor model with a dynamical Λ\Lambda) in order to explain some observational results. We apply the program outlined in section II to study three different geometries which generalize the FRW ones, which are Bianchi \textrm{V}, \textrm{VII}0_{0} and \textrm{IX}, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we arrive to the conclusion that the solutions are isotropic and noninflationary while the cosmological constant behaves as a positive decreasing time function (in agreement with the current observations) and the gravitational constant behaves as a growing time function

    Higher Dimensional Dark Energy Investigation with Variable Λ\Lambda and GG

    Full text link
    Time variable Λ\Lambda and GG are studied here under a phenomenological model of Λ\Lambda through an (n+2n+2) dimensional analysis. The relation of Zeldovich (1968) Λ=8πG2mp6/h4|\Lambda| = 8\pi G^2m_p^6/h^4 between Λ\Lambda and GG is employed here, where mpm_p is the proton mass and hh is Planck's constant. In the present investigation some key issues of modern cosmology, viz. the age problem, the amount of variation of GG and the nature of expansion of the Universe have been addressed.Comment: 7 Latex pages with few change

    Transverse gravity versus observations

    Get PDF
    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, \pd_\m\xi^\m=0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, gg, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein--Hilbert but the matter action is transverse, the models predict that the three {\em a priori} different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.Comment: 21 pages. Title changed. New section on Newtonian limi

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set
    corecore