12 research outputs found
Fabric phase sorptive extraction of selected steroid hormone residues in commercial raw milk followed by ultra-high-performance liquid chromatography–tandem mass spectrometry
Hormones in edible matrices, such as milk, are a subject of concern because of their adverse effects on the endocrine system and cell signaling and the consequent disruption of homeostasis in human consumers. Therefore, the assessment of the presence of hormones in milk as potential endocrine-disrupting compounds is warranted. However, the complexity of milk as a sample matrix and the ultra-low concentration of hormones pose significant analytical challenges. Fabric phase sorptive extraction (FPSE) has emerged as a powerful analytical technique for the extraction of emerging pollutants from complex aqueous matrices. FPSE allows for substantially simplified sample handling and short extraction and desorption times, as well as the decreased use of organic solvents. It is considered a green alternative to traditional extraction methodologies. In this work, the FPSE technique was evaluated to perform the simultaneous extraction of 15 steroid hormones from raw milk without employing any sample pretreatment steps. Clean and preconcentrated hormone solutions obtained from FPSE of raw milk were analyzed using ultra-high-performance liquid chromatography–tandem mass spectrometry to achieve low detection limits, which ranged from 0.047 to 1.242 ng·mL−1. Because of the presence of many interferents in milk, such as proteins, lipids, and sugar, the effect of fat content on the extraction procedure was also thoroughly studied. Additionally, for the first time, the effect of lactose on the extraction of steroid hormones was evaluated, and the results showed that the extraction efficiencies were enhanced in lactose-free samples. Finally, the optimized methodology was applied to commercial samples of cow and goat milk, and no measurable concentrations of the studied hormones were detected in these samples
Simultaneous Determination of Hormonal Residues in Treated Waters Using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry
In the last years, hormone consumption has increased exponentially. Because of that, hormone compounds are considered emerging pollutants since several studies have determinted their presence in water influents and effluents of wastewater treatment plants (WWTPs). In this study, a quantitative method for the simultaneous determination of oestrogens (estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and diethylstilbestrol), androgens (testosterone), and progestogens (norgestrel and megestrol acetate) has been developed to determine these compounds in wastewater samples. Due to the very low concentrations of target compounds in the environment, a solid phase extraction procedure has been optimized and developed to extract and preconcentrate the analytes. Determination and quantification were performed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method developed presents satisfactory limits of detection (between 0.15 and 9.35 ng·L−1), good recoveries (between 73 and 90% for the most of compounds), and low relative standard deviations (under 8.4%). Samples from influents and effluents of two wastewater treatment plants of Gran Canaria (Spain) were analyzed using the proposed method, finding several hormones with concentrations ranged from 5 to 300 ng·L−1
Seagrass responses to nutrient enrichment depend on clonal integration, but not flow-on effects on associated biota
We determined physiological and morphological responses of the seagrass Cymo - docea nodosa and associated epiphytes and epifauna to water column nutrient enrichment, and investigated whether responses were modulated by the clonal integration of the seagrass. Nutrient levels were elevated, relative to 'ambient' plots, in 'large' (∼10 to 100×) and 'moderate' (∼5 to 10×) enrichment plots, in a seagrass meadow off the south coast of Gran Canaria. Clonal integration was severed in half the plots, isolating them from adjacent shoots. Seagrass shoot density, above-ground biomass and leaf surface were lower in fertilized than ambient plots when clonal integration was severed. In the plots where clonal integration was maintained, no differences in shoot density were observed between fertilized and ambient plots, while differences in aboveground biomass and leaf surface were exclusively observed between 'large' enrichment and 'ambient' plots. Seagrass above-ground tissues accumulated P, but not N, when clonal integration was maintained. The N content, but not P content, of below-ground parts increased with fertilization. The content of soluble sugars in seagrass tissues decreased under nutrient enrichment; this decay was, however, buffered when clonal integration was maintained. Grazing bites on leaves increased with nutrient enrichment regardless of the clonal integration. Epiphytic loads increased at elevated nutrient levels irrespective of the clonal integration. The abundance and richness of epifauna were larger on 'moderate' relative to 'ambient' and 'large' enrichment plots, independently of clonal integration. In conclusion, while the physiological and morphological responses of C. nodosa to nutrient enrichment depended on the maintenance of clonal integration, flow-on effects on epiphytes and epifauna were independent of the clonal integration of the seagrass. © Inter-Research 2013.Peer Reviewe
Emerging contaminants in seafront zones. Environmental impact and analytical approaches
Some chemical substances have the potential to enter the coastal and marine environment
and cause adverse effects on ecosystems, biodiversity and human health. For a large majority of them,
their fate and effects are poorly understood as well as their use still unregulated. Finding effective and
sustainable strategies for the identification of these emerging and/or anthropogenic contaminants
that might cause polluting effects in marine environments to mitigate their adverse effects, is of
utmost importance and a great challenge for managers, regulators and researchers. In this review we
will evaluate the impact of emerging contaminants (ECs) on marine coastal zones namely in their
ecosystems and biodiversity, highlighting the potential risks of organic pollutants, pharmaceuticals
and personal care products. Emerging microextraction techniques and high-resolution analytical
platforms used in isolation, identification and quantification of ECs will be also reviewed.info:eu-repo/semantics/publishedVersio
Applications of Fabric Phase Sorptive Extraction to the Determination of Micropollutants in Liquid Samples
The occurrence of organic micropollutants (OMPs) in the environment is a global concern due to their potential ecological risks. Several studies have shown that some OMPs are widely detected in environmental matrices such as surface water and sewage. Wastewater treatment plants (WWTPs) have received international attention over past decades because they are considered the greatest source of aquatic environmental contamination by anthropogenic micropollutants. Intensive sampling and analysis have been globally made to improve understanding of the occurrence, behavior and fate of OMPs in WWTPs using different types of analytical approach. Recently, special awareness has been devoted to developing new effective strategies to extract the micropollutants of wastewater. In particular, microextraction protocols have gained popularity because of their simplicity, low cost and in-field application for environmental analysis. Among these, fabric phase sorptive extraction (FPSE) is reported as an excellent approach due to its properties, not only reducing the required time but also employing minor solvent volume. In this overview, we summarize the results obtained by the Research Group of Environmental Chemical Analysis of the University of Las Palmas de Gran Canaria (Spain) using this technique. Its aim is to show the potential of FPSE for the extraction of some micropollutants, such as personal care products (benzotriazole ultraviolet stabilizers (BUVSs)) and pharmaceuticals (steroid hormones and cytostatic compounds) in different liquid samples, prior to their determination by liquid chromatography
Multistage Horizontal Subsurface Flow vs. Hybrid Constructed Wetlands for the Treatment of Raw Urban Wastewater
In this study, pilot-scale hybrid constructed wetlands (CWs) and multistage horizontal subsurface flow CWs (HF CWs) have been studied and compared for the treatment of raw urban wastewater. In the hybrid CWs, the first stage was a mulch-based horizontal subsurface flow CW and the second stage was a vertical subsurface flow CW (VF CW). The VF CWs were used to determine if sand could improve the performance of the hybrid CW with respect to the mulch. In the multistage HFs, mulch, gravel and sand were used as substrates. The effect of water height (HF10: 10 cm vs. HF40: 40 cm) and surface loading rate (SLR: 12 vs. 24 g Chemical Oxygen Demand (COD)/m(2)d) has been studied. The results show that the use of sand in the vertical flow stage of the hybrid CW did not improve the average performance. Additionally, the sand became clogged, while the mulch did not. The effect of water height on average pollutant removal was not determined but HF10 performed better regarding compliance with legal regulations. With a SLR of 12 g COD/m(2)d, removals of HF10 were: 79% for COD, 75% for NH4+-N, 53% for dissolved molybdate-reactive phosphate-P (DRP), 99% for turbidity and 99.998% forE. coliand total coliforms. When SLR was doubled, removals decreased for NH4+-N: 49%, DRP: -20%, E coli and total coliforms: 99.5-99.9%, but not for COD (85%) and turbidity (99%). Considering the obtained results and the simplicity of the construction and operation of HFs, HF10 would be the most suitable choice for the treatment of raw urban wastewater without clogging problems
Identification and quantification, by NMR and LC-MS, of sterols isolated from the marine sponge Aplysina aerophoba
Aplysterol, several didehydroaplysterols, and their acetylated derivatives were isolated from samples of the marine sponge Aplysina aerophoba, which had been collected on the coast of the Canary Islands, and were identified by chromatography and H-and C-NMR spectroscopy. A quantitative analysis was done, based on the relative intensities of the signals corresponding to the olefinic quaternary carbons from the C-NMR spectrum at 125 MHz. Finally, the results described were confirmed by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS).Grateful acknowledgement is made to the Canary Government (Agencia Canaria de Investigación, Innovación y Sociedad de la Información, ACIISI), and the ICIC (Instituto Canario de Investigación del Cáncer), by financial funding given to this project.Peer Reviewe
Removal of Pharmaceuticals in a Macrophyte Pond-Constructed Wetland System and the Effect of a Low Effluent Recirculation
Waste stabilization ponds and constructed wetlands (CWs) are effective at eliminating pharmaceutical residues, but removals are not usually complete. Their combination is regarded as an efficient, robust wastewater treatment method, but their efficiency in the removal of pharmaceuticals and the effect of a mild effluent recirculation has not been sufficiently studied in full-scale systems. Effluent recirculation can help to improve performance by increasing hydraulic residence time and, eventually, dissolved oxygen concentration. In this work, the presence of pharmaceuticals in wastewater from a university campus, their removal in a macrophyte pond–CW system, and the effect of effluent recirculation on removal and ecological risk were evaluated. Stimulants (caffeine and nicotine) and non-steroidal anti-inflammatories (naproxen and ibuprofen) were the most detected compounds in the influent and showed the highest concentrations, ranging from 0.5 to 300 µg·L−1. The pond–CW combination showed notable elimination for these compounds, achieving 87% on average. The ecological risk was also reduced by between 5.5 and 12.4 times, but it was still over values that indicates high ecological risk, mainly because of the concentrations of nicotine and ibuprofen. The effect of effluent recirculation was not as high as expected since the removals of caffeine, paraxanthine and naproxen were significantly improved, but those of atenolol and ibuprofen were lower. These results suggest that a higher recirculation ratio should be tested
Soil and Water Management Factors That Affect Plant Uptake of Pharmaceuticals: A Case Study
Water and food security are of global concern. Improving knowledge on crops’ potential uptake of pharmaceutical compounds (PhCs) is necessary to guarantee consumer health and improve the public’s perception of reclaimed water reuse. This study aimed to determine how water management (bottom-up applied for being supplied by Subsurface Drip Irrigation) and the plant rhizosphere effect on the uptake of PhCs. Five PhCs were mixed: atenolol, carbamazepine, dicoflenac, ibuprofen and valsartan. A total of 5 treatments were considered: 3 concentrations of PhCs in agricultural volcanic soil: 0.1, 10 and 100 µg·L−1; 0.1 µg·L−1 in sterilized soil; and a blank with three plant replications at 30, 45, and 60 days after emerging. The maximum quantity of the added PhCs was 100 µg·kg soil−1. A variant of the QuEChERS method was followed to extract PhCs from samples. The limits of quantification were between 10 ng·L−1 and 100 ng·L−1 in extracts. No PhCs over the limits of detection were detected (0.06–0.6 µg·kg−1 of dry plant sample). Hence, the described water reuse methodology poses a negligible consumer risk, which contrasts with hydroponic systems in which this risk has been shown. The results are discussed in terms of the effects of irrigation system, water management and the soil-plant barrier
CHEMICAL CONSTITUENTS DERIVED FROM THE CANARIES MARINE SPONGE Myxilla sp.
Stigmasterols, ceramides, including ceramide-1-phosphates and pyrimidines were identified in an ethanol extract of the marine sponge Myxilla sp. The compounds were identified by MS and 1D- and 2D-NMR techniques. A simple method based on an ultra-high-performance liquid chromatography coupled with tandem mass spectrometry was developed to investigate the production of the aforementioned ceramides. This is the first report on ceramide-1-phosphates from a marine sponge