12 research outputs found

    Perampanel as Precision Therapy in Rare Genetic Epilepsies

    Get PDF
    Objective: Perampanel, an antiseizure drug with AMPA-receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Special interest holds epilepsies with loss of GABA inhibition (e.g. SCN1A), overactive excitatory neurons (e.g. SCN2A, SCN8A ), and variants in glutamate receptors (e.g. GRIN2A). We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. Methods: A multicenter project based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel was collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. Results: 137 patients, with 79 different etiologies, aged 2 months-61 years (mean 15.48±9.9) were enrolled. The mean dosage was 6.45±2.47 mg, and treatment period was 2.0±1.78 years (1.5 months-8 years). 62 patients (44.9%) were treated for >2 years. 98 patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61±34.36%. 60 patients (43.5%) sustained over 75% reduction in seizure frequency, including 38 (27.5%) with > 90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, NEU1. 11/17 (64.7%) of patients with SCN1A, 35.3% of which had over 90% seizure reduction. Other etiologies remarkable for over 90% reduction in seizures were GNAO1 and PIGA. 14 patients had a CSWS EEG pattern and in 6 subjects perampanel reduced epileptiform activity. Significance: Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1 and POLG, suggesting a targeted effect related to glutamate transmission

    Expanding the phenotype of RBCK1-associated polyglucosan body myopathy type 1

    No full text
    Polyglucosan body myopathy-1 (PGBM1) is an extremely rare glycogen storage diseases that leads to muscle weakness and cardiomyopathy due to the accumulation of polyglucosan bodies. The clinical presentation appears to be partially dependent on the genetic mutation, but no clear genotype/phenotype correlation is currently possible.We describe a 7 year old patient, who initially presented with recurrent vomiting and respiratory infections until her first year of life. Diagnostic workup revealed an achalasia and the whole exome sequencing revealed an homozygous RBCK1 (RANBP2-type and C3HC4-type zinc finger containing 1) variant (c.896_899delAGTG) located in exon 7 (mid-domain), which has also been described in 4 patients with PGBM1.The unusual presentation with gastrointestinal and respiratory symptoms before the development of progressive muscle weakness expands the phenotype of this disease

    Epilepsy surgery in infants: Safety issues and developmental outcome

    No full text
    Purpose: To evaluate the efficacy and safety of epilepsy surgery in infants. Methods: Included were patients with epilepsy onset during the first year of life, epilepsy surgery before the age of 36 months at the study center and a minimum follow-up of 24 months after surgery. Patients who were surgically treated before the age of 12 months were compared with those between 13 and 36 months. Group differences with respect to efficacy (seizure outcomes and developmental progress measured by the social interaction quotient, SIQ) as well as safety (i. e. peri-operative complication rates) were analyzed. Results: A total of 20 patients (10 girls) were included: 10 (five girls) were operated on as infants (median age at surgery 9.0 months, median disease duration prior to surgery 5.0 months) and 10 (5 girls) were operated on as toddlers (median age at surgery 24.0 months, median disease duration prior to surgery 18.0 months). Favorable seizure outcomes (Wieser 1a and 1) were seen in 80% (8/10) of the infants and 60.0% (6/10) of toddlers. Developmental progress was most evident in infants who were seizure-free and off medication (median SIQ 85.5 versus 63.0 in the toddler group). There were no differences between the two groups with respect to safety aspects. Conclusion: Despite several limitations due to the small number of patients included, our results are in favor of early epilepsy surgery in infants with drug-resistant epilepsy

    Efficacy and safety of Everolimus in children with TSC - associated epilepsy – Pilot data from an open single-center prospective study

    No full text
    Abstract Background Epilepsy occurs in up to 90 % of all individuals with tuberous sclerosis complex (TSC). In 67 % disease onset is during childhood. In ≥ 50 % seizures are refractory to currently available treatment options. The mTOR-Inhibitor Everolimus (Votubia®) was approved for the treatment of subependymal giant cell astrocytoma (SEGA) and renal angiomyolipoma (AML) in Europe in 2011. It’s anticonvulsive/antiepileptic properties are promising, but evidence is still limited. Study aim was to evaluate the efficacy and safety of Everolimus in children and adolescents with TSC-associated epilepsies. Methods Inclusion-criteria of this investigator-initiated, single-center, open, prospective study were: 1) the ascertained diagnosis of TSC; 2) age ≤ 18 years; 3) treatment indication for Votubia® according to the European Commission guidelines; 4) drug-resistant TSC-associated epilepsy, 5) prospective continuous follow-up for at least 6 months after treatment initiation and 6) informed consent to participate. Votubia® was orally administered once/day, starting with 4.5 mg/m2 and titrated to achieve blood trough concentrations between 5 and 15 ng/ml. Primary endpoint was the reduction in seizure frequency of ≥ 50 % compared to baseline. Results Fifteen patients (nine male) with a median age of six (range; 1–18) years fulfilled the inclusion criteria. 26 % (4/15) had TSC1, 66 % (10/15) had TSC2 mutations. In one patient no mutation was found. Time of observation after treatment initiation was median 22 (range; 6–50) months. At last observation, 80 % (12/15) of the patients were responders, 58 % of them (7/12) were seizure free. The overall reduction in seizure frequency was 60 % in focal seizures, 80 % in generalized tonic clonic seizures and 87 % in drop attacks. The effect of Everolimus was seen already at low doses, early after treatment initiation. Loss of efficacy over time was not observed. Transient side effects were seen in 93 % (14/15) of the patients. In no case the drug had to be withdrawn. Conclusion Everolimus seems to be an effective treatment option not only for SEGA and AML, but also for TSC-related epilepsies. Although there are potential serious side effects, treatment was tolerated well by the majority of patients, provided that patients are under close surveillance of epileptologists who are familiar with immunosuppressive agents

    Ketogenic parenteral nutrition in 17 pediatric patients with epilepsy

    No full text
    Objective Ketogenic parenteral nutrition (kPN) is indicated when enteral intake is temporarily limited or impossible, but evidencebased prescriptions are lacking. Objective was to evaluate the efficacy and safety of kPN in children with epileptic encephalopathies using a new computerbased algorithm for accurate component calculating. Methods Children with epilepsy receiving kPN were included. A computerbased algorithm was established on the basis of guidelines of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN): fat intake not exceeding 4 g/kg/day, ageadequate supply of protein, electrolytes, vitamins, and trace elements, but reduced carbohydrates. Primary outcome was successfully reaching relevant ketosis, defined as betahydroxybutyrate plasma level of 2 mmol/L. Efficacy was defined as seizure reduction 50% in de novo kPN and maintenance of response in children already on a ketogenic diet (KD). Safety was assessed by adverse effects, laboratory findings, and the appropriateness of nutritional intake. Results Seventeen children (median 1.84 years) were studied, of which 76% (13/17) were already on an oral ketogenic diet. Indications for kPN were surgery, status epilepticus, vomiting, food refusal, and introduction of enteral feeding in neonates. The parenteral fat/nonfat ratio was mean 0.9 (0.3; range 0.61.5). Relevant ketosis was reached in 10 children (median 2.9 mmol/L), but not in 7 (median = 1.4 mmol/L). In de novo kPN, significant response was observed in 50% (2/4); in patients previously responding to the KD (77%, 10/13), response was maintained. A significant correlation between the degree of ketosis and seizure reduction (correlation coefficient = 0.691; p = .002) was observed. Only mild and transient adverse events occurred during kPN. Significance KPN with fat intake of 3.54.0 g/kg/day was safe and effective. KPN was tailored according to guidelines and individual nutritional needs. In nearly half of the patients, ketosis was lower than during oral KD. Despite this, seizures remained controlled.(VLID)481548

    Impaired oligodendroglial turnover is associated with myelin pathology in focal cortical dysplasia and tuberous sclerosis complex

    No full text
    Conventional antiepileptic drugs suppress the excessive firing of neurons during seizures. In drug-resistant patients, treatment failure indicates an alternative important epileptogenic trigger. Two epilepsy-associated pathologies show myelin deficiencies in seizure-related brain regions: Focal Cortical Dysplasia IIB (FCD) and cortical tubers in Tuberous Sclerosis Complex (TSC). Studies uncovering white matter-pathology mechanisms are therefore urgently needed to gain more insight into epileptogenesis, the propensity to maintain seizures, and their associated comorbidities such as cognitive defects. We analyzed epilepsy surgery specimens of FCD IIB (n = 22), TSC (n = 8), and other malformations of cortical development MCD (n = 12), and compared them to autopsy and biopsy cases (n = 15). The entire lesional pathology was assessed using digital immunohistochemistry, immunofluorescence and western blotting for oligodendroglial lineage, myelin and mTOR markers, and findings were correlated to clinical parameters. White matter pathology with depleted myelin and oligodendroglia were found in 50% of FCD IIB and 62% of TSC cases. Other MCDs had either a normal content or even showed reactive oligodendrolial hyperplasia. Furthermore, myelin deficiency was associated with increased mTOR expression and the lower amount of oligodendroglia was linked with their precursor cells (PDGFRa). The relative duration of epilepsy (normalized to age) also correlated positively to mTOR activation and negatively to myelination. Decreased content of oligodendroglia and missing precursor cells indicated insufficient oligodendroglial development, probably mediated by mTOR, which may ultimately lead to severe myelin loss. In terms of disease management, an early and targeted treatment could restore normal myelin development and, therefore, alter seizure threshold and improve cognitive outcom
    corecore