9 research outputs found

    Application of Cost Benefits Analysis for the Implementation of Renewable Energy and Smart Solution Technologies: A Case Study of InteGRIDy Project †

    Get PDF
    Cost−benefit analysis is a common evaluation method applied to assess whether an energy system is economically feasible as well as the economic viability of energy investment for the energy transition of a pre-existing energy system. This paper focuses on examining the economic costs and benefits obtained through the implementation of renewable energy and smart technology to a pre-existing energy system of two pilot sites—St. Jean and Barcelona. The evaluation process includes all relevant parameters such as investment, operating and maintenance costs, and energy prices needed to assess the economic feasibility of the investment. The results show that investing in energy system development towards a decarbonized future, can provide various benefits such as increased flexibility, and reduced emissions while being economically feasible

    A Qualitative Based Causal-Loop Diagram for Understanding Policy Design Challenges for a Sustainable Transition Pathway:The Case of Tees Valley Region, UK

    Get PDF
    The energy transition is a complex problem that requires a comprehensive and structured approach to policymaking. Such an approach is needed to ensure that transition pathways and policies enable greener energy alternatives whilst ensuring prosperity for people living in the region and limiting environmental degradation to the local ecosystem. This paper applies a qualitative approach based on systematic literature research and review analysis to identify and analyse previous work within this interdisciplinary field in order to understand the complexity of energy transitions and identify key variables and sub-sectors that need to be addressed by policymaking. The paper then looks at the problem from a regional level and uses the Tees Valley region in North East England as a reference case for the energy system and potential proposed policies for the energy transition. A system dynamics methodology was employed to help visualise and emphasise the major complexity of the energy transition and the challenges that policymaking needs to tackle for the successfully enable implementation and application of the energy transition policies. The results of this study identified that in relation to the Tees Valley energy system, its development and transition towards decarbonisation, the major challenge for the policymakers is to ensure that proposed policies foster growth in job creation without leading to job losses within the local employment market

    KPI Evaluation Framework and Tools Performance: A Case Study from the inteGRIDy Project

    Get PDF
    This paper presents an assessment of the impacts of the different tools implemented within the inteGRIDy project through the analysis of key performance indicators (KPIs) that appropriately reflect the technical and economic domains of the inteGRIDy thematic pillars, comprising demand response and battery storage systems. The evaluation is based on improvements brought about by individual components of the inteGRIDy-enabled smart solution across the Isle of Wight (IOW) pilot site. The analyses and the interpretation of findings for the pilot use case evaluation are presented. The results indicate that the smart solution implementation across the IOW pilot site resulted in achieving the inteGRIDy set objectives. Overall, a 93% reduction in energy consumption, equivalent to 643 kWh was achieved, via the M7 energy storage system and heat pumps developed as part of inteGRIDy solution. Additionally, the grid efficiency and demand flexibility contribution to the distribution network operator (DNO)-triggered DR services, based on a 10% increase/decrease in demand, resulted in stabilizing the grid efficiency
    corecore