15 research outputs found

    Interaction of ubiquitin ligase CBL with LMP2A protein of Epstein-Barr virus occurs via PTB domain of CBL and does not depend on adaptor ITSN1

    No full text
    Aim. Previously Latent membrane protein 2A (LMP2A) of Epstein-Barr virus was found to be ubiquitylated by CBL ubiquitin ligase but no direct interaction of LMP2A with CBL was reported. We aimed to explore this interaction and study a possibility of adaptor protein involvement. Taking into consideration that both LMP2A and CBL were shown to interact with endocytic adaptor protein intersectin 1 (ITSN1), we assumed that the latter could serve as a scaffold for LMP2A/CBL complex. Methods. We used an immunofluorescence and coimmuno- precipitation approaches to test a mutual complex formation of ITSN1, CBL and LMP2A proteins. Results. LMP2A coimmunoprecipitated with CBL while LMP2A did not interact with CBL G306E mutant harboring inactive phosphotyrosine-binding domain. We observed a triple colocalization of ITSN1, CBL and LMP2A signals in MCF-7 cells as well as coprecipitation of all mentioned proteins. Overexpression of ITSN1 did not affect the efficiency of complex formation of LMP2A with CBL. Moreover, LMP2A mutant unable to interact with ITSN1 was readily precipitated with CBL. Conclusions. LMP2A can be engaged in the complex together with endocytic adaptor ITSN1 and ubiquitin ligase CBL. We show that PTB domain of CBL is responsible for interaction with LMP2A. ITSN1 is not required for LMP2A recruiting to CBL.Π’Ρ–Π΄ΠΎΠΌΠΎ, Ρ‰ΠΎ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΈΠΉ Π±Ρ–Π»ΠΎΠΊ Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΎΡ— Ρ„Π°Π·ΠΈ 2А вірусу Π•ΠΏΡˆΡ‚Π΅ΠΉΠ½Π°-Π‘Π°Ρ€Ρ€ ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½Ρ–Π»ΡŽΡ”Ρ‚ΡŒΡΡ ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½-Π»Ρ–Π³Π°Π·ΠΎΡŽ CBL, Ρ…ΠΎΡ‡Π° прямої Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Ρ†ΠΈΡ… Π΄Π²ΠΎΡ… Π±Ρ–Π»ΠΊΡ–Π² Π½Π΅ виявлСно. Наша ΠΌΠ΅Ρ‚Π° полягала Ρƒ дослідТСнні Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— LMP2A Ρ– CBL Ρ‚Π° Π²ΠΈΠ²Ρ‡Π΅Π½Π½Ρ– моТливості участі Π² Ρ†ΡŒΠΎΠΌΡƒ комплСксі Π±Ρ–Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π°. Π‘Π΅Ρ€ΡƒΡ‡ΠΈ Π΄ΠΎ ΡƒΠ²Π°Π³ΠΈ, Ρ‰ΠΎ ΠΎΠ±ΠΈΠ΄Π²Π° Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ… Π±Ρ–Π»ΠΊΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽΡ‚ΡŒ Π· Π΅Π½Π΄ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π½ΠΈΠΌ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π½ΠΈΠΌ Π±Ρ–Π»ΠΊΠΎΠΌ ITSN1, ΠΌΠΈ припустили, Ρ‰ΠΎ останній ΠΌΠΎΠΆΠ΅ слугувати ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠΎΡŽ для утворСння комплСксу LMP2A/CBL. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. ІмунофлуорСсцСнтний Π°Π½Π°Π»Ρ–Π· Ρ‚Π° ΠΊΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–ΡŽ застосовано для дослідТСння моТливості формування комплСксу ΠΌΡ–ΠΆ ITSN1, CBL Ρ– LMP2A. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠšΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–Ρ LMP2A Ρ– CBL ΡΠ²Ρ–Π΄Ρ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎ утворСння комплСксу Ρ†ΠΈΠΌΠΈ Π±Ρ–Π»ΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΈΡ‡ΠΎΠΌΡƒ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Π° Ρ„ΠΎΡ€ΠΌΠ° CBL, яка Π½Π΅ Π·Π΄Π°Ρ‚Π½Π° зв’язувати фосфотирозинові залишки, Π½Π΅ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ” Π· LMP2A. Ми спостСрігали ΠΏΠΎΡ‚Ρ€Ρ–ΠΉΠ½Ρƒ ΠΊΠΎΠ»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ ITSN1, CBL Ρ– LMP2A Ρƒ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… Π»Ρ–Π½Ρ–Ρ— MCF-7, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΊΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–ΡŽ всіх Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ… Π±Ρ–Π»ΠΊΡ–Π². НадСкспрСсія ITSN1 Π½Π΅ Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΊΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–Ρ— LMP2A Π· CBL. Π‘Ρ–Π»ΡŒΡˆ Ρ‚ΠΎΠ³ΠΎ, ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΈΠΉ Π²Π°Ρ€Ρ–Π°Π½Ρ‚ LMP2A, Π½Π΅ Π·Π΄Π°Ρ‚Π½ΠΈΠΉ зв’язуватися Ρ–Π· ITSN1, Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ” Π· CBL. Висновки. LMP2A ΠΌΠΎΠΆΠ΅ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ΠΈ Π΄ΠΎ комплСксу Π΅Π½Π΄ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π½ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ Π±Ρ–Π»ΠΊΠ° ITSN1 Ρ‚Π° ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½-Π»Ρ–Π³Π°Π·ΠΈ CBL. Π£Ρ‡Π°ΡΡ‚ΡŒ ITSN1 Π½Π΅ Ρ” Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎΡŽ для формування комплСксу ΠΌΡ–ΠΆ LMP2A Ρ– CBL. Показано, Ρ‰ΠΎ Π Π’Π’-Π΄ΠΎΠΌΠ΅Π½ ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½-Π»Ρ–Π³Π°Π·ΠΈ CBL Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ” Π·Π° зв’язування Π· LMP2A.Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ 2А вируса Π­ΠΏΡˆΡ‚Π΅ΠΉΠ½Π°-Π‘Π°Ρ€Ρ€ убиквитинилируСтся ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-Π»ΠΈΠ³Π°Π·ΠΎΠΉ CBL, ΠΎΠ΄Π½Π°ΠΊΠΎ прямого взаимодСйствия этих Π±Π΅Π»ΠΊΠΎΠ² Ρ€Π°Π½Π΅Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π½Π΅ Π±Ρ‹Π»ΠΎ. Наша Ρ†Π΅Π»ΡŒ состояла Π² исслСдовании взаимодСйствия CBL ΠΈ LMP2A, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ возмоТности участия Π² этом комплСксС Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π°. ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π° упомянутых Π±Π΅Π»ΠΊΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с эндоцитозным Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π½Ρ‹ΠΌ Π±Π΅Π»ΠΊΠΎΠΌ ITSN1, ΠΌΡ‹ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ послСдний ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠΎΠΉ для образования комплСкса LMP2A/CBL. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΠΌΠΌΡƒΠ½ΠΎΡ„Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈ ΠΊΠΎΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡŽ использовали для изучСния возмоТности образования комплСкса с участиСм ITSN1, CBL ΠΈ LMP2A. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠšΠΎΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ CBL ΠΈ LMP2A ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎΠ± ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ комплСкса этими Π±Π΅Π»ΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ мутантная Ρ„ΠΎΡ€ΠΌΠ° CBL, лишСнная способности ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒ фосфотирозиновыС остатки, Π½Π΅ взаимодСйствуСт с LMP2A. ΠœΡ‹ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Ρ‚Ρ€ΠΎΠΉΠ½ΡƒΡŽ ΠΊΠΎΠ»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ITSN1, CBL ΠΈ LMP2A Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ MCF-7, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎ-ΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡŽ Π²Ρ‹ΡˆΠ΅ΡƒΠΏΠΎΠΌΡΠ½ΡƒΡ‚Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ². БупСрэкспрСссия ITSN1 Π½Π΅ влияСт Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΠΈ CBL ΠΈ LMP2A. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ LMP2A, Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹ΠΉ ΠΏΠΎ ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΡŽ с ITSN1, эффСктивно взаимодСйствовал с CBL. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. LMP2A ΠΌΠΎΠΆΠ΅Ρ‚ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒΡΡ Π² комплСкс эндоцитозного Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π° ITSN1 ΠΈ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-Π»ΠΈΠ³Π°Π·Ρ‹ CBL. УчастиС ITSN1 Π½Π΅ являСтся ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ для образования комплСкса LMP2A/CBL. Показано, Ρ‡Ρ‚ΠΎ Π Π’Π’-Π΄ΠΎΠΌΠ΅Π½ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-Π»ΠΈΠ³Π°Π·Ρ‹ CBL ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° связываниС с LMP2A

    THE COMPARATIVE ANALYSIS OF MOTIVATION PEDAGOGICAL SYSTEM TO STUDY A FOREIGH LANGUAGE IN CHINA, CZECH REPUPLIC AND RUSSIA

    No full text

    Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    No full text
    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. For better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures. Β© 2015 AIP Publishing LLC

    Interaction of ubiquitin ligase CBL with LMP2A protein of Epstein-Barr virus occurs via PTB domain of CBL and does not depend on adaptor ITSN1

    No full text
    Aim. Previously Latent membrane protein 2A (LMP2A) of Epstein-Barr virus was found to be ubiquitylated by CBL ubiquitin ligase but no direct interaction of LMP2A with CBL was reported. We aimed to explore this interaction and study a possibility of adaptor protein involvement. Taking into consideration that both LMP2A and CBL were shown to interact with endocytic adaptor protein intersectin 1 (ITSN1), we assumed that the latter could serve as a scaffold for LMP2A/CBL complex. Methods. We used an immunofluorescence and coimmuno- precipitation approaches to test a mutual complex formation of ITSN1, CBL and LMP2A proteins. Results. LMP2A coimmunoprecipitated with CBL while LMP2A did not interact with CBL G306E mutant harboring inactive phosphotyrosine-binding domain. We observed a triple colocalization of ITSN1, CBL and LMP2A signals in MCF-7 cells as well as coprecipitation of all mentioned proteins. Overexpression of ITSN1 did not affect the efficiency of complex formation of LMP2A with CBL. Moreover, LMP2A mutant unable to interact with ITSN1 was readily precipitated with CBL. Conclusions. LMP2A can be engaged in the complex together with endocytic adaptor ITSN1 and ubiquitin ligase CBL. We show that PTB domain of CBL is responsible for interaction with LMP2A. ITSN1 is not required for LMP2A recruiting to CBL.Π’Ρ–Π΄ΠΎΠΌΠΎ, Ρ‰ΠΎ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΈΠΉ Π±Ρ–Π»ΠΎΠΊ Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΎΡ— Ρ„Π°Π·ΠΈ 2А вірусу Π•ΠΏΡˆΡ‚Π΅ΠΉΠ½Π°-Π‘Π°Ρ€Ρ€ ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½Ρ–Π»ΡŽΡ”Ρ‚ΡŒΡΡ ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½-Π»Ρ–Π³Π°Π·ΠΎΡŽ CBL, Ρ…ΠΎΡ‡Π° прямої Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Ρ†ΠΈΡ… Π΄Π²ΠΎΡ… Π±Ρ–Π»ΠΊΡ–Π² Π½Π΅ виявлСно. Наша ΠΌΠ΅Ρ‚Π° полягала Ρƒ дослідТСнні Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— LMP2A Ρ– CBL Ρ‚Π° Π²ΠΈΠ²Ρ‡Π΅Π½Π½Ρ– моТливості участі Π² Ρ†ΡŒΠΎΠΌΡƒ комплСксі Π±Ρ–Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π°. Π‘Π΅Ρ€ΡƒΡ‡ΠΈ Π΄ΠΎ ΡƒΠ²Π°Π³ΠΈ, Ρ‰ΠΎ ΠΎΠ±ΠΈΠ΄Π²Π° Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ… Π±Ρ–Π»ΠΊΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽΡ‚ΡŒ Π· Π΅Π½Π΄ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π½ΠΈΠΌ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π½ΠΈΠΌ Π±Ρ–Π»ΠΊΠΎΠΌ ITSN1, ΠΌΠΈ припустили, Ρ‰ΠΎ останній ΠΌΠΎΠΆΠ΅ слугувати ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠΎΡŽ для утворСння комплСксу LMP2A/CBL. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. ІмунофлуорСсцСнтний Π°Π½Π°Π»Ρ–Π· Ρ‚Π° ΠΊΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–ΡŽ застосовано для дослідТСння моТливості формування комплСксу ΠΌΡ–ΠΆ ITSN1, CBL Ρ– LMP2A. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠšΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–Ρ LMP2A Ρ– CBL ΡΠ²Ρ–Π΄Ρ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎ утворСння комплСксу Ρ†ΠΈΠΌΠΈ Π±Ρ–Π»ΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΈΡ‡ΠΎΠΌΡƒ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Π° Ρ„ΠΎΡ€ΠΌΠ° CBL, яка Π½Π΅ Π·Π΄Π°Ρ‚Π½Π° зв’язувати фосфотирозинові залишки, Π½Π΅ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ” Π· LMP2A. Ми спостСрігали ΠΏΠΎΡ‚Ρ€Ρ–ΠΉΠ½Ρƒ ΠΊΠΎΠ»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ ITSN1, CBL Ρ– LMP2A Ρƒ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… Π»Ρ–Π½Ρ–Ρ— MCF-7, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΊΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–ΡŽ всіх Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ… Π±Ρ–Π»ΠΊΡ–Π². НадСкспрСсія ITSN1 Π½Π΅ Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΊΠΎΡ–ΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΡ–Ρ‚Π°Ρ†Ρ–Ρ— LMP2A Π· CBL. Π‘Ρ–Π»ΡŒΡˆ Ρ‚ΠΎΠ³ΠΎ, ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΈΠΉ Π²Π°Ρ€Ρ–Π°Π½Ρ‚ LMP2A, Π½Π΅ Π·Π΄Π°Ρ‚Π½ΠΈΠΉ зв’язуватися Ρ–Π· ITSN1, Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ” Π· CBL. Висновки. LMP2A ΠΌΠΎΠΆΠ΅ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ΠΈ Π΄ΠΎ комплСксу Π΅Π½Π΄ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π½ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ Π±Ρ–Π»ΠΊΠ° ITSN1 Ρ‚Π° ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½-Π»Ρ–Π³Π°Π·ΠΈ CBL. Π£Ρ‡Π°ΡΡ‚ΡŒ ITSN1 Π½Π΅ Ρ” Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎΡŽ для формування комплСксу ΠΌΡ–ΠΆ LMP2A Ρ– CBL. Показано, Ρ‰ΠΎ Π Π’Π’-Π΄ΠΎΠΌΠ΅Π½ ΡƒΠ±Ρ–ΠΊΠ²Ρ–Ρ‚ΠΈΠ½-Π»Ρ–Π³Π°Π·ΠΈ CBL Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ” Π·Π° зв’язування Π· LMP2A.Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ 2А вируса Π­ΠΏΡˆΡ‚Π΅ΠΉΠ½Π°-Π‘Π°Ρ€Ρ€ убиквитинилируСтся ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-Π»ΠΈΠ³Π°Π·ΠΎΠΉ CBL, ΠΎΠ΄Π½Π°ΠΊΠΎ прямого взаимодСйствия этих Π±Π΅Π»ΠΊΠΎΠ² Ρ€Π°Π½Π΅Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π½Π΅ Π±Ρ‹Π»ΠΎ. Наша Ρ†Π΅Π»ΡŒ состояла Π² исслСдовании взаимодСйствия CBL ΠΈ LMP2A, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ возмоТности участия Π² этом комплСксС Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π°. ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π° упомянутых Π±Π΅Π»ΠΊΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с эндоцитозным Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π½Ρ‹ΠΌ Π±Π΅Π»ΠΊΠΎΠΌ ITSN1, ΠΌΡ‹ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ послСдний ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠΎΠΉ для образования комплСкса LMP2A/CBL. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΠΌΠΌΡƒΠ½ΠΎΡ„Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈ ΠΊΠΎΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡŽ использовали для изучСния возмоТности образования комплСкса с участиСм ITSN1, CBL ΠΈ LMP2A. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠšΠΎΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ CBL ΠΈ LMP2A ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎΠ± ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ комплСкса этими Π±Π΅Π»ΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ мутантная Ρ„ΠΎΡ€ΠΌΠ° CBL, лишСнная способности ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒ фосфотирозиновыС остатки, Π½Π΅ взаимодСйствуСт с LMP2A. ΠœΡ‹ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Ρ‚Ρ€ΠΎΠΉΠ½ΡƒΡŽ ΠΊΠΎΠ»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ITSN1, CBL ΠΈ LMP2A Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ MCF-7, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎ-ΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡŽ Π²Ρ‹ΡˆΠ΅ΡƒΠΏΠΎΠΌΡΠ½ΡƒΡ‚Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ². БупСрэкспрСссия ITSN1 Π½Π΅ влияСт Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΠΈ CBL ΠΈ LMP2A. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ LMP2A, Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹ΠΉ ΠΏΠΎ ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΡŽ с ITSN1, эффСктивно взаимодСйствовал с CBL. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. LMP2A ΠΌΠΎΠΆΠ΅Ρ‚ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒΡΡ Π² комплСкс эндоцитозного Π°Π΄Π°ΠΏΡ‚Π΅Ρ€Π° ITSN1 ΠΈ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-Π»ΠΈΠ³Π°Π·Ρ‹ CBL. УчастиС ITSN1 Π½Π΅ являСтся ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ для образования комплСкса LMP2A/CBL. Показано, Ρ‡Ρ‚ΠΎ Π Π’Π’-Π΄ΠΎΠΌΠ΅Π½ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-Π»ΠΈΠ³Π°Π·Ρ‹ CBL ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° связываниС с LMP2A

    Stochastization of one-step processes in the occupations number representation

    No full text
    By the means of the method of stochastization of one-step processes we get the simplified mathematical model of the original stochastic system. We can explore these models by standard methods, as opposed to the original system. The process of stochastization depends on the type of the system under study. We want to get a unified abstract formalism for stochastization of one-step processes. This formalism should be equivalent to the previously introduced. To implement an abstract approach we use the representation of occupation numbers. In this presentation we use the operator formalism. A feature of this formalism is the use of abstract linear operators which are independent from the state vectors. We use the formalism of Green's functions in order to deal with operators. We get a fully coherent formalism by using the occupation numbers representation. With its help we can get simplified stochastic model of the original system. We demonstrate the equivalence of the occupation number representation and the state vectors representation by using a one-step process example. We have suggested a convenient formalism for unified description of stochastic systems. Also, this method can be extended for the study of nonlinear stochastic systems. Β© ECMS Thorsten Claus, Frank Herrmann, Michael Manitz, Oliver Rose (Editors)

    Stochastization of one-step processes in the occupations number representation

    No full text
    By the means of the method of stochastization of one-step processes we get the simplified mathematical model of the original stochastic system. We can explore these models by standard methods, as opposed to the original system. The process of stochastization depends on the type of the system under study. We want to get a unified abstract formalism for stochastization of one-step processes. This formalism should be equivalent to the previously introduced. To implement an abstract approach we use the representation of occupation numbers. In this presentation we use the operator formalism. A feature of this formalism is the use of abstract linear operators which are independent from the state vectors. We use the formalism of Green's functions in order to deal with operators. We get a fully coherent formalism by using the occupation numbers representation. With its help we can get simplified stochastic model of the original system. We demonstrate the equivalence of the occupation number representation and the state vectors representation by using a one-step process example. We have suggested a convenient formalism for unified description of stochastic systems. Also, this method can be extended for the study of nonlinear stochastic systems. Β© ECMS Thorsten Claus, Frank Herrmann, Michael Manitz, Oliver Rose (Editors)

    Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    No full text
    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. For better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures. Β© 2015 AIP Publishing LLC
    corecore