12 research outputs found

    Robust Dynamic Average Consensus for a Network of Agents with Time-varying Reference Signals

    Full text link
    This paper presents continuous dynamic average consensus (DAC) algorithms for a group of agents to estimate the average of their time-varying reference signals cooperatively. We propose consensus algorithms that are robust to agents joining and leaving the network, at the same time, avoid the chattering phenomena and guarantee zero steady-state consensus error. Our algorithms are edge-based protocols with smooth functions in their internal structure to avoid the chattering effect. Furthermore, each agent is only capable of performing local computations and can only communicate with its local neighbors. For a balanced and strongly connected underlying communication graph, we provide the convergence analysis to determine the consensus design parameters that guarantee the agents' estimate of their average to asymptotically converge to the average of the time-varying reference signals of the agents. We provide simulation results to validate the proposed consensus algorithms and to perform a performance comparison of the proposed algorithms to existing algorithms in the literature

    Leaderless Swarm Formation Control: From Global Specifications to Local Control Laws

    Full text link
    This paper introduces a distributed leaderless swarm formation control framework to address the problem of collectively driving a swarm of robots to track a time-varying formation. The swarm's formation is captured by the trajectory of an abstract shape that circumscribes the convex hull of robots' positions and is independent of the number of robots and their ordering in the swarm. For each robot in the swarm, given global specifications in terms of the trajectory of the abstract shape parameters, the proposed framework synthesizes a control law that steers the swarm to track the desired formation using the information available at the robot's local neighbors. For this purpose, we generate a suitable local reference trajectory that the robot controller tracks by solving the input-output linearization problem. Here, we select the swarm output to be the parameters of the abstract shape. For this purpose, we design a dynamic average consensus estimator to estimate the abstract shape parameters. The abstract shape parameters are used as the swarm state feedback to generate a suitable robot trajectory. We demonstrate the effectiveness and robustness of the proposed control framework by providing the simulation of coordinated collective navigation of a group of car-like robots in the presence of robots and communication link failures

    Robust Dynamic Average Consensus for a Network of Agents with Time-varying Reference Signals

    No full text
    This paper presents a continuous dynamic average consensus (DAC) algorithm for a group of agents to estimate the average of their time-varying reference signals cooperatively. We propose a consensus algorithm that is robust to agents joining and leaving the network, at the same time, avoid the chattering phenomena and guarantee zero steady-state consensus error. Our algorithm is an edge-based protocol with smooth functions in its internal structure to avoid the chattering effect. Furthermore, each agent can only perform local computations and can only communicate with its local neighbors. For a balanced and strongly connected underlying communication graph, we provide the convergence analysis to determine the consensus design parameters that guarantee the estimate of the average to asymptotically converge to the average of the time-varying reference signals. We provide simulation results to validate the proposed consensus algorithm and perform a performance comparison of the proposed algorithm to existing algorithms in the literature

    Genetic Diversity of Merozoite Surface Protein-1 and -2 Genes in Plasmodium falciparum Isolates among Asymptomatic Population in Boset and Badewacho Districts, Southern Ethiopia

    No full text
    Background. The genetic variation of Plasmodium falciparum has been studied to assess local malaria transmission genetic profile using evidence-based intervention measures. However, there are no known previous reports of P. falciparum polymorphism in Badewacho and Boset districts, Southern Ethiopia. The purpose of this study was to determine the genetic diversity of the merozoite surface protein-1 and -2 (msp-1 and msp-2) allelic families in P. falciparum isolates from an asymptomatic populations. Methods. This study was conducted from finger-prick blood samples spotted on 3 mm Whatman filter paper collected during a community-based cross-sectional study. Nested polymerase chain reaction amplification was used to type the allelic variants of msp-1 and msp-2. Results. From 669 asymptomatic study participants, a total of 50 samples positive for P. falciparum were included for molecular analysis. Of 50 positive samples, 43 P. falciparum isolates were successfully amplified for the msp-1 and msp-2 allelic families. A total of twelve different allele sizes (75–250 bp) were identified within the three allelic families of msp-1, whereas ten different allele sizes (250–500 bp) were detected within the two allelic families of msp-2. MAD20 had a higher allelic proportion, 65% among allelic families of msp-1, whereas the 3D7 allelic family 90.7% was higher in msp-2. A slightly higher frequency of polyclonal infection 53.5% was found in msp-2 allelic family, whereas a low proportion polyclonal infection 46.5% was found in msp-1 allelic family. The overall mean multiplicity of infection (MOI) for msp-1 and msp-2 was identical (MOI = 1.56). Correspondingly, the expected heterozygosity (He) value for msp-1 (He = 0.23) and msp-2 (He = 0.22) was almost similar. Conclusions. The findings of this study revealed low genetic diversity of the msp-1 and msp-2 allelic families in P. falciparum isolates. However, continued monitoring status of the local genetic diversity profile in the P. falciparum population is required to support current malaria control and elimination strategies

    Stability in performance of normal and nutritionally enhanced highland maize hybrid genotypes in Eastern Africa

    No full text
    Maize (Zea mays L.) is a major crop in Eastern Africa in terms of production, consumption and income generation. Although highland ecologies in Eastern Africa have high potential for maize production, few varieties have been developed. Breeding efforts have been also concentrated on Quality Protein Maize (QPM) as a viable and cheaper method to alleviate malnutrition. Twenty conventional and 20 QPM three-way hybrid genotypes were developed and evaluated in a randomized block design across 11 and 8 environments in Ethiopia, Kenya, Rwanda and Uganda in 2010. The objective was to identify superior and stable varieties from genotypes. Data were recorded on major agronomic traits (grain yield t ha-1). Additive main effects and multiplicative interactions (AMMI) statistical model was used to assess stability in performance for grain yield. Combined analysis of variance across environments indicated highly significant differences among non-QPM and QPM genotypes. Variations due to environment and genotypexenvironment (GxE) were suggesting genotypes performed differently across environments. Environments of Gisozi, Holleta, Kongoni and Kapchorwa were favourable and stable while Kulumsa was favourable but unstable. Other environments were of medium to low potential. The AMMI analysis ranked 5 non-QPM genotypes were with above-average yield (6.34 t ha) and 8 for stability performance across environments. While for QPM 3 genotypes were yielded better than best check (6.941 ha) and 7 genotypes were stable. Genotype 9 (7.15 t ha) was the only non-QPM genotype with yield better than the best check across environments. The information obtained will help to streamline highland maize testing programs in the region

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore