13 research outputs found

    ΠœΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансная трактография: возмоТности ΠΈ ограничСния ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, соврСмСнный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π΄Π°Π½Π½Ρ‹Ρ…

    Get PDF
    Purpose: systematization of the knowledge about diffusion tensor magnetic resonance tomography; analysis of literature related to current limitations of this method and possibilities of overcoming these limitations.Materials and methods. We have analyzed 74 publications (6 ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ 74 ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ (6 Russian, 68 foreign), published in the time period from 1986 to 2021years.Β  More, than half of these articles were published in the last ten years, 19 studies-in the time period from 2016 to 2021years.Results. In this article weΒ  represent the physical basis of diffusion weighted techniques of magnetic resonance tomography, principles of obtaining diffusion weighted images and diffusion tensor, cover the specific features of the probabilistic and deterministic approaches of the diffusion tensor MRI data processing, describe methods of evaluation of the diffusion characteristics of tissues in clinical practice. Article provides a thorough introduction to the reasons of existing limitations of diffusion tensor MRI and systematization the main developed approaches of overcoming these limitations, such as multi-tensor model, high angular resolution diffusion imaging, diffusion kurtosis visualization. The article consistently reviews the stages of data processing of diffusion tensor magnetic resonance tomography (preprocessing, processing and post processing). We also describe the special aspects of the main approaches to the quantitative data analysis of diffusion tensor magnetic resonance tomography (such as analysis of the region of interest, analysis of the total data amount, quantitative tractography).Conclusion. Magnetic resonance tractography is a unique technique for noninvasive in vivo visualization of brain white matter tracts and assessment of the structural integrity of their constituent axons. In the meantime this technique, which has found applications in numerous pathologies of central nervous system, has a number of significant limitations, and the main of them are the inability to adequately visualize the crossing fibers and the relatively low reproducibility of the results. Standardization of the data postprocessing algorithms, further upgrading of the magnetic resonance scanners and implementation of the alternative tractography methods have the potential of partially reducing of the current limitations.ЦСль исслСдования. БистСматизация Π·Π½Π°Π½ΠΈΠΉ ΠΎ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Π½Π·ΠΎΡ€Π½ΠΎΠΉ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ; Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, ΠΊΠ°ΡΠ°ΡŽΡ‰Π΅ΠΉΡΡ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π° сСгодняшний ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈ возмоТностСй ΠΈΡ… прСодолСния.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ 74 ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ (6 отСчСствСнных, 68 Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ…), Π²Ρ‹ΡˆΠ΅Π΄ΡˆΠΈΡ… Π² свСт Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 1986 ΠΏΠΎ 2021 Π³ΠΎΠ΄. Π‘ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ Ρ€Π°Π±ΠΎΡ‚ Π±Ρ‹Π»ΠΎ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ Π² послСднСС дСсятилСтиС, 19 Ρ€Π°Π±ΠΎΡ‚ – Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 2016 ΠΏΠΎ 2021 Π³ΠΎΠ΄.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Ρ‹ физичСскиС основы Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ получСния Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎ-Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ‚Π΅Π½Π·ΠΎΡ€Π°, ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Ρ‹ особСнности вСроятностного ΠΈ дСтСрминистского ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π΄Π°Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Π½Π·ΠΎΡ€Π½ΠΎΠΉ МРВ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Ρ… характСристик Ρ‚ΠΊΠ°Π½Π΅ΠΉ Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрСны ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Π½Π·ΠΎΡ€Π½ΠΎΠΉ МРВ, Π° Ρ‚Π°ΠΊΠΆΠ΅ систСматизированы основныС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ΅ΠΌΡ‹ прСодолСния этих ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ‚Π΅Π½Π·ΠΎΡ€Π½Π°Ρ модСль, диффузионная визуализация высокого ΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, диффузионная ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ визуализация, диффузионная куртозисная визуализация. ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ рассмотрСны этапы ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Π½Π·ΠΎΡ€Π½ΠΎΠΉ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (прСпроцСссинг, процСссинг ΠΈ постпроцСссинг). ΠžΡ‚Ρ€Π°ΠΆΠ΅Π½Ρ‹ особСнности основных ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ количСствСнному Π°Π½Π°Π»ΠΈΠ·Ρƒ Π΄Π°Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Π½Π·ΠΎΡ€Π½ΠΎΠΉ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΈΠ· области интСрСса, Π°Π½Π°Π»ΠΈΠ· всСго объСма Π΄Π°Π½Π½Ρ‹Ρ…, количСствСнная трактография).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансная трактография – ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΏΡ€ΠΈΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠΉ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ проводящих ΠΏΡƒΡ‚Π΅ΠΉ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ структурной цСлостности ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ΠΈΡ… аксонов, нашСдшая ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… заболСваниях Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя эта ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈΠΌΠ΅Π΅Ρ‚ ряд сущСствСнных ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ, основными ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ низкая Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Бтандартизация Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² постпроцСссинга Π΄Π°Π½Π½Ρ‹Ρ…, дальнСйшСС ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ магнитнорСзонансных Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΎΠ² ΠΈ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ способны частично Π½ΠΈΠ²Π΅Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ΡΡ Π² настоящСС врСмя нСдостатки

    ВСрапСвтичСская ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ввСдСния Π½Π΅ΠΉΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠ»ΡŽΡ€ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΡ€ΠΈ остром ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌ ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π΅ Ρƒ крыс

    Get PDF
    Aim. Neural progenitor cells (NPC) are used for the development of cell therapies of neurological diseases. Their stereotaxic transplantation in the middle cerebral artery occlusion (MCAO) model imitating ischemic stroke results in symptom aleviation. However, exploration of less invasive transplantation options is essential, because stereotaxic transplantation is a complex procedure and can be applied to humans only by vital indications in a specialized neurological ward. The aim of the present study was to evaluate the efficacy of cell therapy of the experimental ischemic stroke by the intra-arterial transplantation of NPC.Materials and methods. NPC for transplantation (IPSC-NPC) were derived by two-stage differentiation of cells of a stable line of human induced pluripotent stem cells. Stroke modeling in rats was carried out by transitory 90 min endovascular MCAO by a silicon-tipped filament. NPC were transplanted 24 hours after MCAO. Repetitive magnetic resonance tomography of experimental animals was made with the Bruker BioSpin ClinScan tomograph with 7 Tl magnetic field induction. Animal survival rate and neurological deficit (using mNSS standard stroke severity scale) were evaluated at the 1st (before IPSC-NPC transplantation), 7th and 14th day after transplantation. Histological studies were carried out following standard protocols.Results. Intra-arterial transplantation of 7 Γ— 105 IPSC-NPC in 1 ml at a constant 100 l/min rate in case of secured blood flow through the internal carotid artery did not cause brain capillary embolism, additional cytotoxic brain tissue edemas or other complications, while inducing increase of animal survival rate and enhanced revert of the neurological deficit. IPSC-NPC accumulation in brain after intra-arterial infusion was demonstrated. Some cells interacted with the capillary endothelium and probably penetrated through the blood-brain barrier.Conclusion. Therapeutic efficacy of the systemic, intra-arterial administration of NPC in ischemic stroke has been experimentally proven. A method of secure intra-arterial infusion of cell material into the internal carotid artery middle in rats has been developed and tested.ЦСль. ΠΠ΅ΠΉΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ (НПК) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ нСврологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π˜Ρ… стСрСотаксичСскоС Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΌΠΎΠ·Π³ крыс послС ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ окклюзии срСднСй ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ (ОБМА) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Π»Π΅Π³Ρ‡Π΅Π½ΠΈΡŽ симптоматики. Однако стСрСотаксичСскоС Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ являСтся слоТной ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ΠΎΠΉ ΠΈ для лСчСния Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² спСциализированной ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅ ΠΏΠΎ ΠΆΠΈΠ·Π½Π΅Π½Π½Ρ‹ΠΌ показаниям, Ρ‡Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ исслСдованиС возмоТности ΠΌΠ΅Π½Π΅Π΅ Ρ‚Ρ€Π°Π²ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… способов трансплантации. ЦСль настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ – исслСдованиС возмоТности провСдСния ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π° ΠΏΡƒΡ‚Π΅ΠΌ Π²Π½ΡƒΡ‚Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ввСдСния НПК.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. НПК для трансплантации (ИПБК-НПК) ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ двухступСнчатой Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠ»ΡŽΡ€ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π° Ρƒ крыс ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Π°Π½Π·ΠΈΡ‚ΠΎΡ€Π½ΠΎΠΉ (90 ΠΌΠΈΠ½) эндоваскулярной ОБМА Ρ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚ΠΎΠΌ с силиконовым Π½Π°ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΈΠΊΠΎΠΌ. Π’Π½ΡƒΡ‚Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ трансплантация НПК Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»Π°ΡΡŒ Ρ‡Π΅Ρ€Π΅Π· 24 часа послС ОБМА. ΠœΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансная томография ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π½Π° МР-Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π΅ ClinScan Ρ„ΠΈΡ€ΠΌΡ‹ Bruker BioSpin с ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля 7 Π’Π». На 1 (Π΄ΠΎ ввСдСния ИПБК-НПК), 7 ΠΈ 14-Π΅ сутки послС трансплантации ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈΡΡŒ Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ нСврологичСский Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ с использованиСм стандартной ΡˆΠΊΠ°Π»Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ тяТСсти ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π° mNSS для Π³Ρ€Ρ‹Π·ΡƒΠ½ΠΎΠ². ГистологичСскиС исслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ, ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ стандартными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Π½ΡƒΡ‚Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ трансплантация ИПБК-НПК Π² Π΄ΠΎΠ·Π΅ 7 Γ— 105 НПК Π² 1 ΠΌΠ» с Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ100 ΠΌΠΊΠ»/ΠΌΠΈΠ½ ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ° ΠΏΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ сонной Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ Π½Π΅ Π²Ρ‹Π·Ρ‹Π²Π°Π»Π° эмболии капилляров ΠΌΠΎΠ·Π³Π°, появлСния Π½ΠΎΠ²Ρ‹Ρ… Π·ΠΎΠ½ цитотоксичСского ΠΎΡ‚Π΅ΠΊΠ° вСщСства Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ослоТнСний ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ достовСрному ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ выТиваСмости ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ Π±ΠΎΠ»Π΅Π΅ быстрому Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡŽ нСврологичСского статуса. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ ИПБК-НПК Π² ΠΌΠΎΠ·Π³Π΅ послС ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΡƒΠ·ΠΈΠΈ. Π§Π°ΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ взаимодСйствовала с эндотСлиСм капилляров ΠΈ, вСроятно, способна ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°Ρ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π“Π­Π‘.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ тСрапСвтичСской эффСктивности НПК ΠΏΡ€ΠΈ ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π΅ ΠΏΡ€ΠΈ систСмной, Π²Π½ΡƒΡ‚Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ трансплантации. ΠžΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΈ протСстирован ΠΌΠ΅Ρ‚ΠΎΠ΄ бСзопасной Π²Π½ΡƒΡ‚Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΡƒΠ·ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² бассСйн Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ сонной Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ Ρƒ крыс

    Combined Cell Therapy in the Treatment of Neurological Disorders

    No full text
    Cell therapy of neurological diseases is gaining momentum. Various types of stem/progenitor cells and their derivatives have shown positive therapeutic results in animal models of neurological disorders and in clinical trials. Each tested cell type proved to have its advantages and flaws and unique cellular and molecular mechanism of action, prompting the idea to test combined transplantation of two or more types of cells (combined cell therapy). This review summarizes the results of combined cell therapy of neurological pathologies reported up to this point. The number of papers describing experimental studies or clinical trials addressing this subject is still limited. However, its successful application to the treatment of neurological pathologies including stroke, spinal cord injury, neurodegenerative diseases, Duchenne muscular dystrophy, and retinal degeneration has been reported in both experimental and clinical studies. The advantages of combined cell therapy can be realized by simple summation of beneficial effects of different cells. Alternatively, one kind of cells can support the survival and functioning of the other by enhancing the formation of optimum environment or immunomodulation. No significant adverse events were reported. Combined cell therapy is a promising approach for the treatment of neurological disorders, but further research needs to be conducted

    On the proton radiography of magnetic fields in targets irradiated by intense picosecond laser pulses

    No full text
    Proton radiography is a common diagnostic technique in laser-driven magnetic field generation studies. It is based on measuring proton beam deflection in electromagnetic fields induced around the target with the help of radiochromic film stacks. Unraveling information recorded in experimental radiographs and extracting the field profiles is not always a straightforward task. In this paper, some aspects of data analysis by reproducing experimental radiographs in numerical simulations are described. The approach allows determining the field strength and structure in the target area for various target geometries

    The Impact of Cerebral Perfusion on Mesenchymal Stem Cells Distribution after Intra-Arterial Transplantation: A Quantitative MR Study

    No full text
    Intra-arterial (IA) mesenchymal stem cells (MSCs) transplantation providing targeted cell delivery to brain tissue is a promising approach to the treatment of neurological disorders, including stroke. Factors determining cell distribution after IA administration have not been fully elucidated. Their decoding may contribute to the improvement of a transplantation technique and facilitate translation of stroke cell therapy into clinical practice. The goal of this work was to quantitatively assess the impact of brain tissue perfusion on the distribution of IA transplanted MSCs in rat brains. We performed a selective MR-perfusion study with bolus IA injection of gadolinium-based contrast agent and subsequent IA transplantation of MSCs in intact rats and rats with experimental stroke and evaluated the correlation between different perfusion parameters and cell distribution estimated by susceptibility weighted imaging (SWI) immediately after cell transplantation. The obtained results revealed a certain correlation between the distribution of IA transplanted MSCs and brain perfusion in both intact rats and rats with experimental stroke with the coefficient of determination up to 30%. It can be concluded that the distribution of MSCs after IA injection can be partially predicted based on cerebral perfusion data, but other factors requiring further investigation also have a significant impact on the fate of transplanted cells

    Therapeutic efficacy of intra-arterial administration of induced pluripotent stem cells-derived neural progenitor cells in acute experimental ischemic stroke in rats

    Get PDF
    Aim. Neural progenitor cells (NPC) are used for the development of cell therapies of neurological diseases. Their stereotaxic transplantation in the middle cerebral artery occlusion (MCAO) model imitating ischemic stroke results in symptom aleviation. However, exploration of less invasive transplantation options is essential, because stereotaxic transplantation is a complex procedure and can be applied to humans only by vital indications in a specialized neurological ward. The aim of the present study was to evaluate the efficacy of cell therapy of the experimental ischemic stroke by the intra-arterial transplantation of NPC.Materials and methods. NPC for transplantation (IPSC-NPC) were derived by two-stage differentiation of cells of a stable line of human induced pluripotent stem cells. Stroke modeling in rats was carried out by transitory 90 min endovascular MCAO by a silicon-tipped filament. NPC were transplanted 24 hours after MCAO. Repetitive magnetic resonance tomography of experimental animals was made with the Bruker BioSpin ClinScan tomograph with 7 Tl magnetic field induction. Animal survival rate and neurological deficit (using mNSS standard stroke severity scale) were evaluated at the 1st (before IPSC-NPC transplantation), 7th and 14th day after transplantation. Histological studies were carried out following standard protocols.Results. Intra-arterial transplantation of 7 Γ— 105 IPSC-NPC in 1 ml at a constant 100 l/min rate in case of secured blood flow through the internal carotid artery did not cause brain capillary embolism, additional cytotoxic brain tissue edemas or other complications, while inducing increase of animal survival rate and enhanced revert of the neurological deficit. IPSC-NPC accumulation in brain after intra-arterial infusion was demonstrated. Some cells interacted with the capillary endothelium and probably penetrated through the blood-brain barrier.Conclusion. Therapeutic efficacy of the systemic, intra-arterial administration of NPC in ischemic stroke has been experimentally proven. A method of secure intra-arterial infusion of cell material into the internal carotid artery middle in rats has been developed and tested

    Dynamic MRI of the Mesenchymal Stem Cells Distribution during Intravenous Transplantation in a Rat Model of Ischemic Stroke

    No full text
    Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell–cell interactions or invoking direct long-lasting effects on brain vessels
    corecore