2,615 research outputs found

    Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure)

    Full text link
    In this paper, we formulate the geometric Bogomolov conjecture for abelian varieties, and give some partial answers to it. In fact, we insist in a main theorem that under some degeneracy condition, a closed subvariety of an abelian variety does not have a dense subset of small points if it is a non-special subvariety. The key of the proof is the study of the minimal dimension of the components of a canonical measure on the tropicalization of the closed subvariety. Then we can apply the tropical version of equidistribution theory due to Gubler. This article includes an appendix by Walter Gubler. He shows that the minimal dimension of the components of a canonical measure is equal to the dimension of the abelian part of the subvariety. We can apply this result to make a further contribution to the geometric Bogomolov conjecture.Comment: 30 page

    MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects

    Get PDF
    BACKGROUND A current challenge of microRNA (miRNA) research is the identification of biologically relevant miRNA:target gene relationships. In plants, high miRNA:target gene complementarity has enabled accurate target predictions, and slicing of target mRNAs has facilitated target validation through rapid amplification of 5' cDNA ends (5'-RACE) analysis. Together, these approaches have identified more than 20 targets potentially regulated by the deeply conserved miR159 family in Arabidopsis, including eight MYB genes with highly conserved miR159 target sites. However, genetic analysis has revealed the functional specificity of the major family members, miR159a and miR159b is limited to only two targets, MYB33 and MYB65. Here, we examine the functional role of miR159 regulation for the other potential MYB target genes. RESULTS For these target genes, functional analysis failed to identify miR159 regulation that resulted in any major phenotypic impact, either at the morphological or molecular level. This appears to be mainly due to the quiescent nature of the remaining family member, MIR159c. Although its expression overlaps in a temporal and spatial cell-specific manner with a subset of these targets in anthers, the abundance of miR159c is extremely low and concomitantly a mir159c mutant displays no anther defects. Examination of potential miR159c targets with conserved miR159 binding sites found neither their spatial or temporal expression domains appeared miR159 regulated, despite the detection of miR159-guided cleavage products by 5'-RACE. Moreover, expression of a miR159-resistant target (mMYB101) resulted predominantly in plants that are indistinguishable from wild type. Plants that displayed altered morphological phenotypes were found to be ectopically expressing the mMYB101 transgene, and hence were misrepresentative of the in vivo functional role of miR159. CONCLUSIONS This study presents a novel explanation for a paradox common to plant and animal miRNA systems, where among many potential miRNA-target relationships usually only a few appear physiologically relevant. The identification of a quiescent miR159c:target gene regulatory module in anthers provides a likely rationale for the presence of conserved miR159 binding sites in many targets for which miR159 regulation has no obvious functional role. Remnants from the demise of such modules may lead to an overestimation of miRNA regulatory complexity when investigated using bioinformatic, 5'-RACE or transgenic approaches.RSA was funded by an ANU postgraduate scholarship and by a CSIRO Emerging Science Initiative. JL is the recipient of an ANU international student postgraduate scholarship. This research was supported by an Australian Research Council grant DP0773270

    Streptococcus pneumoniae as an UncommonCause of Superinfected Pancreatic Pseudocysts

    Get PDF
    Abstract.: We report a patient with pancreatic pseudocysts that were superinfected with Streptococcus pneumoniae. The literature on the prevalence of superinfection of pancreatic tissue by S. pneumoniae, as well as on its prophylaxis and treatment, is reviewed. In addition, a possible pathophysiologic pathway is discusse

    Thermoelectric cross-plane properties on p- and n-Ge/SixGe1-x superlattices

    Get PDF
    Silicon and germanium materials have demonstrated an increasing attraction for energy harvesting, due to their sustainability and integrability with complementary metal oxide semiconductor and micro-electro-mechanical-system technology. The thermoelectric efficiencies for these materials, however, are very poor at room temperature and so it is necessary to engineer them in order to compete with telluride based materials, which have demonstrated at room temperature the highest performances in literature [1]. Micro-fabricated devices consisting of mesa structures with integrated heaters, thermometers and Ohmic contacts were used to extract the cross-plane values of the Seebeck coefficient and the thermal conductivity from p- and n-Ge/SixGe1-x superlattices. A second device consisting in a modified circular transfer line method structure was used to extract the electrical conductivity of the materials. A range of p-Ge/Si0.5Ge0.5 superlattices with different doping levels was investigated in detail to determine the role of the doping density in dictating the thermoelectric properties. A second set of n-Ge/Si0.3Ge0.7 superlattices was fabricated to study the impact that quantum well thickness might have on the two thermoelectric figures of merit, and also to demonstrate a further reduction of the thermal conductivity by scattering phonons at different wavelengths. This technique has demonstrated to lower the thermal conductivity by a 25% by adding different barrier thicknesses per period

    Spatio-Temporal Monitoring of Agricultural Land Use and Impacts on Soil Organic Carbon in Switzerland

    Get PDF
    Land use conversions between grass- and cropland strongly affect organic carbon stocks in agricultural soils. Thus, spatio-temporal knowledge of land use rotation practices is required for a sustainable agricultural management and to mitigate climate change through soil carbon sequestration. In this study, we present an agricultural monitoring system to obtain annual land use maps of grass- cropland distributions on the agricultural area in Switzerland. Furthermore, we aim to detect impacts on soil organic carbon stocks due to inter-annual land use dynamics within a 15-year period. We used the Landsat archive, terrain and climate variables to set up a Random Forest land use classifier across multiple years. We applied the model for each year from 2000 to 2015 and stacked the classification grids to obtain a map of spatially explicit land use sequences. Finally, we grouped the sequences in six classes of prevailing management practices and attributed soil organic carbon observations, which were recently collected across Switzerland. The classifier shows an overall accuracy of 86% and a Kappa of 0.72 using out-of-bag data for evaluation. The classifications were evaluated using model-free data, showing overall accuracies between 80%-100% and Kappa between 0.6-0.8. Approximately 50% of the agricultural area in Switzerland is subject to rotations between grass- and cropland. The mean soil organic carbon content of permanent grassland use amounts to 3.6%, while permanent cropland use shows a decreased content of 1.8%. Moreover, management practices with increasingly dominant grassland use show higher soil carbon contents (2.9%-3.1%) than the equivalent practices of dominant cropland (2%-2.1%)

    Ternary Phase Diagram of Nitrogen Doped Lutetium Hydrides

    Full text link
    This paper presents the results of an extensive structural search of ternary solids containing lutetium, nitrogen and hydrogen. Based on thousands of thermodynamically stable structures, available online, the convex hull of the formation enthalpies is constructed. To obtain the correct energetic ordering, the highly accurate RSCAN DFT functional is used in high quality all-electron calculations. In this way possible pseudopotential errors are eliminated. A novel lutetium hydride structure (HLu2_2) that is on the convex hull is found in our search. An electron phonon analysis however shows that it is not a candidate structure for near ambient superconductivity. Besides this structure, which appears to have been missed in previous searches, possibly due to different DFT methodologies, our results agree closely with the results of previously published structure search efforts. This shows, that the field of crystal structure prediction has matured to a state where independent methodologies produce consistent and reproducible results, underlining the trustworthiness of modern crystal structure predictions. Hence it is quite unlikely that a structure, that would give rise within standard BCS theory to the superconducting properties, claimed to have been observed by Dasenbrock-Gammon et al. 10.1038/s41586-023-05742-0 , exists. This solidifies the evidence that no structure with conventional superconducting properties exists that could explain the experimental observation made by Dasenbrock-Gammon et al. 10.1038/s41586-023-05742-

    Disseminated Invasive Aspergillosis with Cerebral Involvement Successfully Treated with Caspofungin and Voriconazole

    Get PDF
    We describe a case of cerebral aspergillosis which was successfully treated with a combination of caspofungin and voriconazole. The patient remains in remission 18 months after stopping antifungal treatment. We discuss primary and salvage therapy of invasive aspergillosis with focus on cerebral involvement. Since historical data showed a fatal outcome in most cases, amphotericin B does not cross the blood brain barrier while voriconazole does, we chose a combination of voriconazole plus caspofungin as primary therap

    Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus.

    Get PDF
    Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination
    corecore