49 research outputs found
The human eye-movement response to maintained surface galvanic vestibular stimulation
Contains fulltext :
141356.pdf (publisher's version ) (Closed access
The Short-Term Effect of Weight Loss Surgery on Volumetric Breast Density and Fibroglandular Volume
Purpose:
Obesity and breast density are both associated with an increased risk of breast cancer and are potentially modifiable. Weight loss surgery (WLS) causes a significant reduction in the amount of body fat and a decrease in breast cancer risk. The effect of WLS on breast density and its components has not been documented. Here, we analyze the impact of WLS on volumetric breast density (VBD) and on each of its components (fibroglandular volume and breast volume) by using three-dimensional methods.
Materials and Methods:
Fibroglandular volume, breast volume, and their ratio, the VBD, were calculated from mammograms before and after WLS by using Volparaâ„¢ automated software.
Results:
For the 80 women included, average body mass index decreased from 46.0 ± 7.22 to 33.7 ± 7.06 kg/m2. Mammograms were performed on average 11.6 ± 9.4 months before and 10.1 ± 7 months after WLS. There was a significant reduction in average breast volume (39.4 % decrease) and average fibroglandular volume (15.5 % decrease), and thus, the average VBD increased from 5.15 to 7.87 % (p < 1 × 10−9) after WLS. When stratified by menopausal status and diabetic status, VBD increased significantly in all groups but only perimenopausal and postmenopausal women and non-diabetics experienced a significant reduction in fibroglandular volume.
Conclusions:
Breast volume and fibroglandular volume decreased, and VBD increased following WLS, with the most significant change observed in postmenopausal women and non-diabetics. Further studies are warranted to determine how physical and biological alterations in breast density components after WLS may impact breast cancer risk.ECU Open Access Publishing Support Fun
Automated analysis of magnetic resonance imaging of the breast
Contains fulltext :
140305.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 24 april 2015Promotor : Karssemeijer, N.
Co-promotores : Marti, R., Platel, B.126 p
Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications
PURPOSE: In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists' detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performance of the CADe system in finding malignant microcalcifications. METHODS: A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. RESULTS: The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity range of 0.8-1.0 were significantly different between the system without BACs removal and the system with BACs removal, 0.129 +/- 0.009 versus 0.144 +/- 0.008 (p<0.05), respectively. Additionally, the sensitivity at one false positive per 50 cases and one false positive per 25 cases increased as well, 37% versus 51% (p<0.05) and 58% versus 67% (p<0.05) sensitivity, respectively. Additionally, the CADe system with BACs removal reduces the number of false positives per case by 29% on average. The same sensitivity at one false positive per 50 cases in the CADe system without BACs removal can be achieved at one false positive per 80 cases in the CADe system with BACs removal. CONCLUSIONS: By using dedicated algorithms to detect and remove breast arterial calcifications, the performance of CADe systems can be improved, in particular, at false positive rates representative for operating points used in screening
Optimization of volumetric breast density estimation in digital mammograms
Contains fulltext :
175079.pdf (publisher's version ) (Closed access)Fibroglandular tissue volume and percent density can be estimated in unprocessed mammograms using a physics-based method, which relies on an internal reference value representing the projection of fat only. However, pixels representing fat only may not be present in dense breasts, causing an underestimation of density measurements. In this work, we investigate alternative approaches for obtaining a tissue reference value to improve density estimations, particularly in dense breasts. Two of three investigated reference values (F1, F2) are percentiles of the pixel value distribution in the breast interior (the contact area of breast and compression paddle). F1 is determined in a small breast interior, which minimizes the risk that peripheral pixels are included in the measurement at the cost of increasing the chance that no proper reference can be found. F2 is obtained using a larger breast interior. The new approach which is developed for very dense breasts does not require the presence of a fatty tissue region. As reference region we select the densest region in the mammogram and assume that this represents a projection of entirely dense tissue embedded between the subcutaneous fatty tissue layers. By measuring the thickness of the fat layers a reference (F3) can be computed. To obtain accurate breast density estimates irrespective of breast composition we investigated a combination of the results of the three reference values. We collected 202 pairs of MRI's and digital mammograms from 119 women. We compared the percent dense volume estimates based on both modalities and calculated Pearson's correlation coefficients. With the references F1-F3 we found respectively a correlation of [Formula: see text], [Formula: see text] and [Formula: see text]. Best results were obtained with the combination of the density estimations ([Formula: see text]). Results show that better volumetric density estimates can be obtained with the hybrid method, in particular for dense breasts, when algorithms are combined to obtain a fatty tissue reference value depending on breast composition
Automated Volumetric Mammographic Breast Density Measurements May Underestimate Percent Breast Density for High-density Breasts
Contains fulltext :
191364.pdf (Publisher’s version ) (Closed access)RATIONALE AND OBJECTIVES: The purpose of this study was to evaluate discrepancy in breast composition measurements obtained from mammograms using two commercially available software methods for systematic trends in overestimation or underestimation compared to magnetic resonance-derived measurements. MATERIALS AND METHODS: An institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study was performed to calculate percent breast density (PBD) by quantifying fibroglandular volume and total breast volume derived from magnetic resonance imaging (MRI) segmentation and mammograms using two commercially available software programs (Volpara and Quantra). Consecutive screening MRI exams from a 6-month period with negative or benign findings were used. The most recent mammogram within 9 months was used to derive mean density values from "for processing" images at the per breast level. Bland-Altman statistical analyses were performed to determine the mean discrepancy and the limits of agreement. RESULTS: A total of 110 women with 220 breasts met the study criteria. Overall, PBD was not different between MRI (mean 10%, range 1%-41%) and Volpara (mean 10%, range 3%-29%); a small but significant difference was present in the discrepancy between MRI and Quantra (4.0%, 95% CI: 2.9 to 5.0, P < 0.001). Discrepancy was highest at higher breast densities, with Volpara slightly underestimating and Quantra slightly overestimating PBD compared to MRI. The mean discrepancy for both Volpara and Quantra for total breast volume was not significantly different from MRI (p = 0.89, 0.35, respectively). Volpara tended to underestimate, whereas Quantra tended to overestimate fibroglandular volume, with the highest discrepancy at higher breast volumes. CONCLUSIONS: Both Volpara and Quantra tend to underestimate PBD, which is most pronounced at higher densities. PBD can be accurately measured using automated volumetric software programs, but values should not be used interchangeably between vendors